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PREFACE

TO THE SECOND EDITION

My experience in presenting the elements of practical

astronomy to rather large classes of students in the

University of Michigan led me to the conclusion that

the extensive treatises on the subject could not be used

satisfactorily, except in special cases. Brief lecture notes

were employed in preference. Arrangements were made

with a local publisher that the notes should be written

out in full and printed, almost exclusively it was sup-

posed, for use in my own classes. The process of en-

largement had just begun when the call to my present

position was accepted. The completion of the manu-

script in the midst of new and pressing duties was

extremely difficult ; the text and the details of the treat-

ment lacked the harmony which can come only from a

leisurely development of the subject. Nevertheless, the

first edition has been used in a great many colleges and

universities whose astronomical departments are of the

highest character. This is my reason for carefully revis-

ing and slightly enlarging the book for a second edition.

A word concerning the limitations of the book may

not be out of place. The field of practical astronomy

has become very extensive, embracing essentially all the

work carried on in our astronomical observatories. It
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includes the photographic charting of the stars, the spec-

troscopic determination of stellar motions, the determi-

nation of solar parallax from heliometer observations of

the asteroids, the construction of empirical formulae and

tables for computing atmospheric refraction, and scores

of other operations of equally high character. These,

however, can best be described as special problems, re-

quiring prolonged efforts on the part of professional

astronomers ; in fact, the solution of a single problem

often severely taxes the combined resources of a number

of leading observatories. While it is evident that a

discussion of the methods employed in solving special

problems must be looked for in special treatises and in

the journals, yet these methods are all developed from

the elements of astronomy, of physics, and of the other

related sciences. It is intended that this book shall

contain the elements of practical astronomy, with numer-

ous applications to the problems first requiring solution.

It is believed that the methods of observing employed

are illustrations of the best modern practice. The

methods of reduction are intended to be exact to the

extent that none of the value and precision of the obser-

vations will be sacrificed in the computations ; further

refinement would be superfluous, and misleading to the

inexperienced. The demonstrations are direct and fan-

damental, except in the case of refraction. The scien-

tific basis of the subject of refraction is largely physical,

and the astronomical superstructure is almost wholly

empirical. For these reasons, the proper proportions of

the subject with reference to the rest of the book seem

to be preserved by the insertion of the final formulse.
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An attempt has been made to give credit for methods

which have not yet found their way into general practice.

The illustrations of modern instruments are from cuts

kindly furnished by the makers, viz. : those for Fig-

ures 15, 20, 21 and 24 by Fauth & Co., Washington
;

those for Figures 14, 17 and 26 by C. L. Berger &
Sons, Boston; that for Figure 10 by the Keuffel &
Esser Co., New York ; and that for Figure 27 by War-

ner & Swasey, Cleveland. Figure 25, of a Repsold

meridian circle, is copied with permission from Baron

A.. V. Schweiger-Lerchenfeld's Atlas der Himmelskunde

(Vienna).

The author is indebted to his colleagues. Professors

Schaeberle, Tucker and Hussey, and Mr. Perrine, for

valuable suggestions and assistance.

W. W. CAMPBELL.

Lick Observatory,

University of California,

January, 1899.
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PRACTICAL ASTRONOMY

CHAPTER I

DEFINITIONS— SYSTEMS OF COORDINATES— TRANS-

FORMATION OF COORDINATES

1. The heavenly bodies appear to us as if they were

situated on the surface of a sphere of indefinitely great

radius, whose center is at the point of observation. Their

directions from us are constantly changing. They all

appear to move from east to west at such a rate as to

make one complete revolution in about twenty-four hours.

This is due to the diurnal rotation of the earth. The sun

appears to move eastward among the stars at such a rate

as to make one revolution per year. This is caused by

the annual revolution of the earth around the sun. The

moon and the various planets have motions characteristic

of the orbits which they describe. Measurements with

instruments of precision enable us to detect other motions

which, we shall see later, are conveniently divided into

two classes : those due to parallax, refraction, and diurnal

aberration, which depend upon the observer's geographi-

cal position; and those due to precession, nutation, annual

aberration, and proper motion, which are independent of

the observer's position.

From data furnished by systematic observations it has

been shown that these motions occur in accordance with

well-defined physical laws. It is therefore possible to

compute the position of a celestial object for any given
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instant. A table giving at equal intervals of time the

places of a body as affected by the second class of motions

mentioned above, is called an ephemeris of the body. The
astronomical annuals * furnish accurate ephemerides of

the principal celestial objects several years in advance.

If an observer knows his position on the earth, he can,

from data furnished by the ephemerides, compute the

direction of a star f at any instant. Conversely, by
observing the directions of the stars with suitable instru-

ments, he can determine the time and his geographical

position. It is with this converse problem that we are

principally concerned.

DEFINITIONS

2. The sphere on whose surface the stars appear to be

situated is called the celestial sphere. Any plane passing

through the point of observation cuts the celestial sphere

in a great circle. Since the radius is indefinitely great,

all parallel planes whose distances apart are finite cut the

sphere in the same great circle.

In order to determine the position of a point on the

sphere and express the relation existing between two or

more points, the circles, lines, points and terms defined

below are in current use.

The horizon is the great circle of the sphere whose plane

passes through the point of observation and is perpen-

dicular to the plumb-line.

The produced plumb-line, or vertical line, cuts the

sphere above in the zenith and below in the nadir. The

* The principal annuals are the American Ephemeris and Nautical

Almanac, the Berliner Astronomisches Jahrbuch, the (British) Nautical

Almanac, and the Connaissance des Temps. Unless otherwise specified

we shall refer to the first of these, and call it the American Ephemeris,

or the Ephemeris.

t For convenience we shall use star, point or body to denote any

celestial object.
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zenith and nadir are the poles of the horizon, and all great

circles passing through them are called vertical circles.

The points of the horizon directly south, west, north

and east of the observer are called, respectively, the south,

west, north and east points.

The meridian is the vertical circle which passes through

the south and north points.

The prime vertical is the vertical circle which passes

through the east and west points.

The altitude of a point is its distance from the horizon,

measured on the vertical circle passing through the point.

Distances above the horizon are + ; helow^ — . The alti-

tudes of all points on the sphere are included between
0° and + 90°, and 0° and - 90°. Instead of the alti-

tude, it is frequently convenient to use the zenith distance,

which is the distance of the point from the zenith, meas-

ured on the vertical circle of the point. It is the com-

plement of the altitude. The zenith distances of all

points on the sphere lie between 0° and -f 180°.

The azimuth of a point is the arc of the horizon inter-

cepted between the vertical circle of the point and some

fixed point assumed as origin. With astronomers it is

customary to reckon azimuth from the south point around

to the west through 360°. Surveyors frequently reckon

from the north point.

The celestial equator is the great circle of the sphere

whose plane is perpendicular to the earth's axis. It

therefore coincides with or is parallel to the terrestrial

equator.

The earth's axis produced is the axis of the celestial

sphere. It cuts the sphere in the north and south poles

of the equator. We shall for brevity call them the north

and south poles.

All great circles passing through the north and south

poles are called hour circles. The hour circle passing

through the zenith coincides with the meridian.

t-''^^
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The declination of a point is its distance from the

equator, measured on the hour circle passing through the

point. Distances north are + ; south, — . The declina-

tions of all points on the sphere are included between
0° and + 90°, and 0° and - 90°.

Instead of the declination, it is sometimes convenient

to use the north polar distance, which is the distance of

a point from the north pole, measured on the hour circle

of the point. It is therefore the complement of the

declination. The north polar distances of all points lie

between 0° and + 180°.

The hour angle of a point is the arc of the equator

intercepted between the meridian, or south point of the

equator, and the hour circle passing through the point.

In practice, however, it is customary to consider the hour

angle as the equivalent angle at the north pole between

the meridian and hour circle. It is reckoned from the

meridian around to the west through 24 hours, or 360°.

The ecliptic is the great circle of the sphere formed by

the plane of the earth's orbit ; or, it is the g:^eat circle

described by the apparent annual motion of the sun. It

intersects the equator in two points called the equinoxes.

The vernal equinox is that point through which the

sun appears to pass in going from the south to the north

side of the equator (about March 20).

The autumnal equinox is that point through which the

sun appears to pass in going from the north to the south

side of the equator (about Sept. 22).

The solstices are the points of the ecliptic 90° from

the equinoxes. The sun is in the summer solstice about

June 21 ; in the winter solstice about Dec. 21.

The equinoctial colure is the hour circle passing through

the equinoxes. The solstitial colure is the hour circle

passing through the solstices.

The angle between the equator and ecliptic is called the

obliquity of the ecliptic.



„/

DEFINITIONS 5

The right ascension of a point is the arc of the celestial

equator intercepted between the vernal equinox and the

hour circle of the point. It is measured from the vernal

equinox toward the east through 24 hours, or 360°.

The sidereal time at any point of observation is equal to

the right ascension of the observer's meridian. It is like-

wise equal to the hour angle of the vernal equinox.

Great circles perpendicular to the ecliptic are called

latitude circles.

The latitude of a point is its distance from the ecliptic,

measured on the latitude circle passing through the point.

Distances north are + ; souths —
. The latitudes of all

points on the sphere are included between 0° and + 90°,

and 0° and - 90°.

The longitude of a point is the arc of the ecliptic inter-

cepted between the vernal equinox and the latitude circle

of the point. It is measured from the vernal equinox

toward the east through 360°.

The position of an observer on the earth's surface is

defined by his geographical latitude and longitude.

The geographical latitude of a place is the declination of

the zenith of the place. It is also equal to the altitude of

the north pole. Latitudes of places north of the equator

are -|- ; south, —

.

The geographical longitude of a place is the arc of the

equator intercepted between the meridian of the place and
the meridian of some other place assumed as origin. It is

customary to reckon longitudes west (-h) and east ( —

)

from the meridian of Greenwich, through 12 hours, or

180°.

The preceding definitions are illustrated by Fig. 1.

The celestial sphere is orthogonally projected on the

plane of the horizon, SWNE. The zenith Z is projected

on the point of observation. NZS is the meridian ; EZW
the prime vertical; WVQE the equator; VLBV the

ecliptic; P the north pole; P' the north pole of the
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ecliptic ; V the vernal equinox ; V the autumnal equi-

nox; VP the equinoctial colure; CPP' the solstitial

colure; BO= PP'=BVO*= t\iQ obliquity of the ecliptic.

Let be any point on the sphere ; then ZOA is its

vertical circle ; MOP its hour circle ; L OP' its latitude

circle. The position of the point is defined by the

following arcs, called spherical coordinates

:

N

W

P' p ^^^

/ ^
1 y^
/ /

//

/

//Yf-

/ ^5^/ /

V /

h
M

!^-^

E .^

B
Fig. 1

AO = Altitude, h,

ZO = Zenith distance, z,

SA = SZA = Azimuth, A,

MO = Declination, 8,

PO = North polar distance, P,

QM =QPM= Hour angle, t,

VM = Right ascension, a,

VQ = VPQ = Sidereal time, 6,

LO = Latitude,
fi,

VL = Longitude, X,

PP' = BVC = Obliquity of the ecliptic, c.

* To be exact, we should say that the angle BVC is measured by the

arc BC and by the arc PP' ; but in the operations of practical astronomy

the distinction is seldom made.
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3. It will be observed that the horizon, equator and

ecliptic are of fundamental importance. They are called

primary circles. Vertical circles, hour circles and lati-

tude circles, which are respectively perpendicular to them,

are called secondary circles. Two spherical coordinates,

one measured on a primary circle, the other on its sec-

ondary, are necessary and sufficient to determine com-

pletely the direction of a point ; and from the definitions

just given, to meet the requirements of astronomical work,

we formulate four

SYSTEMS OF COORDINATES

Circles of Reference Coordinates

System Primary- Secondary Primary Secondary

I

II

III

IV

Horizon

Equator

Equator

Ecliptic

Vertical circle

Hour circle

Hour circle

Latitude circle

Azimuth

Hour angle

Right ascension

Longitude

Altitude

Declination

Declination

Latitude

The altitude, azimuth and hour angle of a star are con-

tinually changing. They are functions of the time and

the observer's position. Hence they are adapted to the

determinations of time, azimuth and geographical latitude

and longitude. Right ascension and declination are nearly

independent of the observer's position, and vary with the

time. They are largely used for recording the relative

positions of stars, and in ephemerides. Latitude and

longitude are also nearly independent of the observer's

position, but are employed almost exclusively in theoreti-

cal astronomy.

In the solution of many problems of practical astron-

omy, it is required that the coordinates of a point in one

system be transformed into the corresponding coordinates

in another system.
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TRAKSFORMATION OF COORDINATES

4. Given the altitude and azimuth of a star, required its

declination arid hour angle.

This transformation is effected by solving the spherical

triangle PZO, Fig. 1, whose vertices are at the pole, the

star, and the zenith. Three parts of this triangle are

known . ZO the zenith distance or complement of the

given altitude, PZO the supplement of the given azimuth,

and PZ the complement of the given latitude; from which,

by the methods of Spherical Trigonometry, we can find

P the complement of the required declination, and ZPO
the required hour angle.

For any spherical triangle ABC we have \_Chauvenef8

/Sph. Trig., § 114] the general equations

cos a = cos b cos c + sin b sin c cos A, (1)

sin a cos B = cos b sin c — sin b cos c cos A, (2)

sin a sin B = sin b sin A. (3)

To adapt these equations to the triangle POZ, let

A = PZO = 180° -A, a =P0 = 90° - 8,

h = ZO = 90° - A, B = ZPO = t,

c =PZ = 90°-<j>.

Then (1), (2) and (3) become

sin 8 = sin h sin <^ — cos h cos
<f)

cos ^, (4)

cos 8 cos t = sin h cos <^ + cos h sin <^ cos A

,

(5)

cos 8 sin i = cos A sin ^, (6)

which enable us to find B and t.

If h be replaced by its equivalent, 90° — z. these

become
sin 8 = cos 2 sin <^ — sin z cos <^ cos A

,

(7)

cos 8 cos t = cos z cos <^ + sin z sin
(f>

cos A

,

(8)

cos 8 sin t — sin z sin A

.

(9)

These equations are not adapted to logarithmic compu-

tations (unless addition and subtraction logarithmic tables

are employed), and they will be further transformed.
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Let m be a positive abstract quantity, and M an angle

such that
m sinM = sin z cos A, (10)

Tw cos il/ = cos 2;, (11)

which conditions may always be satisfied \_Chauve7ief

s

Plane Trig., § 174]. Substituting these in (7), (8) and

(9), they become
sin 8 = m sin (<^ — M),

cos 8 cos t = m cos (<^ — il/),

cos 8 sin t = sin 2 sin A

.

From these and (10) and (11) there result

tanM — tan z cos ^, (12)

, , tan A sinM ,,o\tan t =
, (13)

cos (<^ - .1/) ^ ^

tan 8 = tan (<;^ — M) cost, (14)

which completely effect the transformation. The com-

putations are partially checked by (9).

The quadrant of M is determined by (10) and (11).

t is greater or less than 180° according as A is greater or

less than 180°, since both terminate on the same side of

the meridian. The quadrant of 8 is fixed by (14).

Example. At Ann Arbor, 1891 March 13 the altitude

of Regulus is + 32° 10' 15"! 4, and the azimuth is 283°

5' 6". 4. Find the declination and hour angle. [F'or

instructions in the art of computing, see Appendix A.]

<^ + 42° 16' 48" .0 (Amer. Ephem., p. 482)

z 57 49 44.6 tan(«^-iT/) 9.616914 , -r

A 283 5 6 .4

tan 2 0.201331

cos^ 9.354873

M 19° 47' 40".l

<t>
42 16 48 .0

\&nA 0.633702„

sin 3/ 9.529753

sec (</) — 7?i) 0.034339

tan< 0.197794„

> • ' t 302° 22' 54".0
^''

t 20* 9'».31».6

cost 9.728805
-"

8 +12°29'56".4

Proof

sine 9.927608

sin A 9.988575,

cosec t 0.073401„

sec 8 0.010417

logl 0.000001
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5. Given the declination and hour angle of a star, required

its azimuth and zenith distance.

In the general equations (1), (2) and (3) let

b = 90° - 8, c = 90° - </>, A = t,

B = 180°-^, a = z;

and they become

cos z = sin 8 sin
<f> + cos 8 cos <^ cos t, (15)

sin z cos A = — sin 8 cos
<f> + cos 8 sin

<f>
cos t, (16)

sin 2 sin A = cos 8 sin <. (17)

To transform them for logarithmic computation, put

nsiniV^=sin8, (18)

n cosN = cos 8 cos t. (19)
Whence

taniV^=^^, (20)
cosi

tan A - tan t cos iVT ,„..

^^''^-sinCc^-iV)'
^^^^

tan 2
^tan(<^-iV)^

cos ^4

which effect the transformation. (IT) furnishes a partial

check on the computations.

Example. At Ann Arbor, 1891 March 13, when the

hour angle of Regulus is 20* 9"* 31*. 6, what are the azimuth

and zenith distance ?

8 + 12° 29' 56".4

302 22 54 .0

(Amer. Ephem., p. 332)

tan 8

cost

N

9.345719

9.728805

. 22° 29' 7".9

tan

cos A
z

9.556204

9.354873

57° 49' 44".6

<f>
42 16 48 .0 Proof

t&nt 0.1977a4„ cos 8 9.989583

cosiV 9.965661 . sinf 9.926599„

cosec («^ — iV)

tan^
0.470247

0.633702n

cosec A
cosec z

0.011425„

0.072392

A 283° 5' 6".4 logl 9.999999
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6. The angle POZ, Fig. 1, between the hour and vertical

circles of a star, is called the star's parallactic angle. Let

q represent it.

To find the parallactic angle when z, A, and
<f>

are given,

we have, from (1), (2) and (3),

sin 8 = cos z sin
<f}
— sin z cos <p cos A, (23)

cos S cos J = sin 2 sin </> + coszcos^cos^, (24)

cos 8 sin q = sin A cos
<f>. (25)

Assume
k sinK = sin

<f>, (26)

k cos K = cos
<f)

cos A, (27)

and we obtain

tanK = ^-^^, (28)
cos A

.^ ^ tan A cosK ,on\

cos (/C — z)

The quadrant of q is determined by (25) and (29).

To find the parallactic angle and zenith distance when
8, t, and </> are given, we have, from (1), (2) and (3),

cos 2 = sin 8 sin «^ + cos 8 cos
<f>

cos t, (30)

sin 2 cos q = cos 8 sin ^ — sin 8 cos ^ cos t, (31)

sin 2 sin q = sin < cos
<f>. (82)

Assume
Z sin Z = cos <fi cos f, (33)

I cos i = sin
<f>, (34)

and we obtain

tan L = cot <^ cos t, (35)

tang
^tan^sinZ

.gg^
^ cos(8+Z) ^ ^

tan 2 =^2ili±^. (37)
cos 9

The computations may be partially checked by (32).

The values of q obtained from the data of § 4 and § 5

are equal to each other, and to 312° 25' 33".5.

^\ •^
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7. Given the declination and zenith distance of a star^

required its hour angle.

If a, b and c are the sides and A an angle of a spherical

triangle, we have [^Chauvenefs Sph. Trig.., § 18]

tan i A = ^
>"(«-Wsin(s--c)
\ sin s sin (s — a)sin s sin (s — a)

in which s = |(a + b + c). If in this we substitute from

triangle POZ
A = <, a = z, b = 90° - 8, c = 90° - «^,

it reduces to

tan \ t ^ ±x/^^ ^^ + ('^ -jn^hx K^ - (<A - gg. (38)

Similarly, it can be shown that

.^. 1 . - ^^p^ + (<^ -m sin \ [z - («A - 8)]
(39)

\ cos
<f}

COS 8

To determine the quadrant of t it must appear from the

data of the problem whether the star is west or east of the

meridian. If it is west, |^ Hs in the first quadrant ; if east,

I i is in the second. Applications of formula (38) may be

found in §§ 81 and 82.

8. Given the hour angle of a star, required its right

ascension, and vice versa; the sidereal time in both cases

being known.

In Fig. 1, for any star we have

VM = right ascension of star = a,

MQ = hour angle of star = t,

VQ = sidereal time = $.

Then

and
a = e-t, (40)

t = 6-a, • (41)

which effect the transformations.
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Applications of (40) and (41) are numerous throughout

the book.

9. Criven the right ascension and declination of a star,

required its longitude and latitude, and vice versa.

The transformation formulaj are obtained by applying

the general equations (1), (2) and (3) to the triangle

FOP\ Fig. 1, in which

OP = 90° - 8, OP' = 90° - yg, OPP' = 90° + a,

OP'P = 90° - A, PP' = obliquity of ecliptic = e.

In order to adapt the resulting equations to logarithmic

computation, assume

/sinF=sin8, (42)

/ cos F = cos 8 sin a, (43)

and we shall obtain

tani^=^^"°
sin a

(44)

tan A-'«'(^-^)*^"^
cosF

(45)

tan (S = tan (F - e) sin A. (46)

The computations may be partially checked by the

equation
cos 8 sin a sec F cos (F — €) cosec \sec/3 = 1, (47)

which is derived without difficulty from the transforma-

tion formulae.

Example. The coordinates of Regulus on 1891 March
13 are

a = 150° 38' 43".5, 8 = + 12° 29' 56". 4.

What are the corresponding longitude and latitude ?

The necessary value of e, furnished by the American

Ephemeris, page 278, is 23° 27' 16". 0. The resulting

coordinates are

X = 148° 19' 8".l, )3 = + 0° 27' 40".5.
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10. Criven the right ascensions and declinations of two

stars, required the distance between them.

Let the coordinates of the stars be a', 8\ and a", 8",

and d the required distance. In the spherical triangle

whose vertices are at the two stars and the pole, the sides

are 90° — B', 90° — 8" and d, and the angle at the pole is

a" — a'. Let B' represent the angle opposite 90° — 8'.

If in (1), (2) and (3) we put

Si = d,B = B', b = 90° - 8', c = 90° - 8", A = a" - a',

they become

cos d = sin 8' sin 8" + cos 8' cos 8" cos (a" — a'), (48)'

sin d cos B' = sin 8' cos 8" — cos 8' sin 8" cos (a" — a'), (49)

sin d sin B' = cos 8' sin (a" — a'). (50)

If d can be determined from its cosine with sufficient

precision, (48) will give the required distance; otherwise

it should be determined from the tangent. If we assume

g sin G = cos 8' cos (a" — a'), (51)

g cos G = sin 8', (52)

we shall find that

tan G = cot 8' cos (a" - a'), (53)

tan B' = tan (g-'-aQ sing ^.

cos (8" + (?) ^ ^

cos B' ^ ^

(50) furnishes a partial check on the computations.

An application of these formulae may be found in

§ 75, (C-).
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CHAPTER II

TIME

11. The passage of any point of the celestial sphere

across the meridian of an observer is called the transit, or

culmination, or meridian passage of that point. In one

rotation of the sphere about its axis, every point of the

sphere is twice on the meridian; once at upper culmina-

tion (above the pole), and once at lower culmination

(below the pole). For an observer in the northern hemi-

sphere, a star whose north polar distance is less than the

latitude is constantly above the horizon, and both culmi-

nations are visible; a star whose south polar distance is

less than the latitude is constantly below the horizon, and

both culminations are invisible ; and a star between these

limits is visible at upper culmination, but invisible at the

lower. For an observer in the southern hemisphere the

first two cases are reversed.

Three systems of time are required in the operations of

practical astronomy : sidereal, apparent (or true) solar and

mean solar.

A sidereal day is the interval of time between two suc-

cessive transits of the true vernal equinox over the same

meridian. The sidereal time at any instant is the hour

angle of the vernal equinox at that instant. It is 0'' 0'" 0*

when the vernal equinox is on the meridian— this instant

is called sidereal noon— and is reckoned through 24 hours.

The sidereal time is also equal to the right ascension of

the observer's meridian, since the right ascension of the

meridian is equal to the hour angle of the vernal equinox.

15
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It follows, then, that any star will be at upper culmina-

tion at the instant when the sidereal time is equal to the

star's right ascension; and at lower culmination when the

sidereal time differs 12 hours from the star's right ascen-

sion. The rotation of 'the earth on its axis is perfectly

uniform; but owing to precession and nutation the vernal

equinox has a minute and irregular motion to the west

(amounting on the average to 0".126 per day): so that a

sidereal day does not correspond exactly to one rotation of

the earth, nor is its length absolutely uniform, but it is

sensibly so.

An apparent (or true) solar day is the interval of time

between two successive upper transits of the sun over the

same meridian. The hour angle of the sun at any instant

is the apparent time at that instant. It is reckoned from
Qft Qm Qi ^^ noon— called apparent noon— through 24

hours. But the apparent day varies greatly in length,

for two reasons, viz.

:

First, — The earth moves in an ellipse with a variable

velocity. Hence the sun's (apparent) eastward motion

(in longitude) is variable.

Second,—The sun's (apparent) motion is in the ecliptic.

Hence the sun's motion in right ascension and hour'

angle is variable, and a clock cannot be rated to keep

apparent time.

A convenient solar time is obtained in this way:
Assume an imaginary body to move in the ecliptic with

a uniform angular velocity such that it and the sun pass

through perigee at the same instant. Assume a -second

imaginary body to move in the equator with a uniform

angular velocity such that the two will pass through the

vernal.equinox at the same instant. The second body is

called the mean sun.

A mean solar day is the interval of time between two
successive upper transits of the mean sun over the same
meridian. The hour angle of the mean sun is the mean
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time. It is reckoned from 0''0'"0* at noon— called mean

noon— through 24 hours.

The difference between the apparent and mean time is

called the equation of time. Its value is given in the

American Ephemeris for the instants of GreenAvich appar-

ent and mean noon and Washington apparent noon,

whence its value may be obtained for any other instant

by interpolation. ^^./, .., ^f^ /// /a6'

The astronomical solar day begins at noon, whereas the

day popularly used— called the civil day— begins at (the

preceding) inidnight. Thus, Feb. 1, 10'' a.m., civil reck-

oning, is Jan. SI'' 22'' astronomical mean time.

12. The interval of time between two successive pas-

sages of the mean sun through the mean vernal equinox

— called a tropical year— was for the year 1800, accord-

ing to Bessel, 365.24222 * mean sol^r days.

The number of sidereal days in this interval is 366.24222,

since in that interval of time the mean sun moves eastward

through about 360°, and therefore the vernal equinox dur-

ing the year makes one more transit over any given merid-

ian than the sun. Thus we have

365.24222 mean days = 366.24222 sidereal days.

Whence
24* mean time = 24* 3"* 56'.555 sidereal time,

24* sidereal time = 23 56 4.001 mean time.

From these equations it is found that the gain of side-

real time on mean time in one mean hour is 9^.8565; and

in one sidereal hour, 9^8296. These are the amounts by

which the right ascension of the mean sun increases in one

mean and one sidereal hour, respectively.

* The length of the tropical year is diminishing at the rate of about 0».6

per century. This is due to the fact that the mean vernal equinox is

moving westward at an accelerated rate, as will be seen later, from the

last of equations (120).

c
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CONVERSION OF TIME

13. In nearly every problem of practical astronomy it

is necessary to convert the time at one place into the cor-

responding time at another place, or to convert the time

in one system into the corresponding time in another sys-

tem. By means of the data furnished in the Ephemeris

this is readily done.

14. To convert the time at one place into the correspond-

ing time at another.

Since every epoch of time is defined by an hour angle,

the difference of time at two places is the difference of

the two corresponding hour angles ; and that is equal to

the difference of the longitudes of the two places. There-

fore, .if the difference of longitude be added to the time at

the western place the sum is the corresponding time at

the eastern. If it be subtracted from the time at the east-

ern place the result is the time at the western.

Example 1. The Ann Arbor mean time is 1891 March
10'* 21^^ 10™ 54*.70. What is the corresponding Greenwich

mean time ?

Ann Arbor mean time, 1891 March lO"* 21» 10"* 54'.70

Longitude Ann Arbor, Amer. Ephem., p. 482, + 5 34 55 .14

Greenwich mean time 1891 March 11 2 45 49 .84

Example 2. The Washington sidereal time is 0'' 23**

17M0. What is the corresponding Ann Arbor sidereal

time?

"Washington sidereal time, 0* 23" 17*. 10

Difference of longitude, Amer. Ephem., p. 482, 26 43 .10

Ann Arbor sidereal time, 23 56 34 .00

Example 3. The Ann Arbor apparent time is 1891

March 20*^ 21^^ 58™ 19M7. What is the Berlin apparent

time at the same instant ?

Ann Arbor apparent time, 1891 March 20'' 21» 58™ 19».17

Difference of longitude, 6 28 30 .05

Berlin apparent time, 1891 March 21 4 26 49 .22
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15. To convert apparent time at any place into mean

time, and vice versa.

The equation of time at the given instant is required.

When this is applied with the proper sign to the one, it

gives the other. If apparent time is given, convert it into

Greenwich apparent time, and take the equation of time

from* page I of the given month in the Ephemeris. If

mean time is given, convert it into Greenwich mean time,

and take the equation of time from page II of the month.

In taking these and other data from the Ephemeris,

care must be exercised in making the interpolations.

Thus, let it be required to determine the equation of time

at Greenwich apparent time 1891 Feb. 24** lO''. Its value

for apparent noon is +13"* 25^52, and the difference for

one hour at noon of that day is 0*.381. The difference

for one hour at noon the next day is 0^.406. The hourly

difference is therefore variable, but we may assume the

second difference to be constant. The change in the equa-

tion during the 10 hours after noon is ten times the average

hourly change for the 10 hours ; that is, since the second

difference is constant, ten times the hourly change at the

middle period, or at 5 hours after noon. The average

hourly change is 0*. 386, and the desired equation of time is

+ 13™ 25'.52 - 10 X 0».386 = + IS" 21»,66,

Example. The Berlin mean time is 1891 Feb. 28*^ O'^

11" 20*. 60. What is the apparent time ?

Berlin mean time, 1891 Feb, 28<' 0* 11™ 20».60

Longitude Berlin, - 53 34.91

Greenwich mean time,
'

Feb. 27 23 18 w/ '.

This is 23^30 after Gr. mean noon Feb. 27, or 0\70

before noon Feb. 28. In this and similar cases the inter-

polation should be made for the interval before noon.

Equation of time, Gr. mean noon, Feb. 28, - 12'» 44».52

Change before noon, 0.70 x 0».473, .33

Equation of time, — 12 44 .85

Berlin apparent time, 1891 Feb. 27<^ 23* 58 35 .75
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16. To convert a mean time interval into the equivalent

sidereal interval, and vice versa.

Tn § 12 it is shown that sidereal time gains 9". 8565

on mean time in one mean hour. The corresponding

gain for any number of hours, minutes, and seconds, is

tabulated in Table III of the appendix to the American

Ephemeris. If this gain be added to the mean time inter-

val, the sum is the equivalent sidereal interval.

The gain of sidereal time on mean time in one sidereal

hour is 9^8296. The corresponding gain for any number

of hours, minutes, and seconds, is tabulated in Table II

of the appendix to the American Ephemeris. If this

gain be subtracted from the sidereal interval, the differ-

ence is the equivalent mean time interval.

Example 1. A mean time interval is 17'' 33"' 21*, 76.

Find the corresponding sidereal interval.

Mean time interval, 17* 33" 2K76
Gain of sidereal on mean, Table III, 2 53 .04

Sidereal interval, 17 36 14.80

Example 2. A sidereal time interval is 17^* 36"* 14*. 80.

Find the corresponding mean time interval.

Sidereal interval, 17» 36" 14»80.

Gain of sidereal on mean, Table II, 2 53 .04

Mean time interval, 17 33 21 .76

17. To convert mean time into sidereal time.

Mean time at any instant is the interval after mean
noon. If this interval be converted into the equivalent

sidereal interval and added to the sidereal time at ^oon,

the sum will be the sidereal time required. The sidereal

time at noon is equal to the right ascension of the mean
sun at this instant. The Ephemeris gives on page II for

the month the sidereal time, or the right ascension of the

mean sun, at Greenwich mean noon, whence its right
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ascension at noon for a place whose longitude is L may
be obtained by applying the term L x 9\8565,* from

Table III of the appendix to the American Ephemeris.

Example. The Ann Arbor mean time is 1891 Feb. 20^^

11'^ 45™ 20^40. What is the equivalent sidereal time ?

Right ascension mean sun at Gr. mean noon, Feb. 20,

Change in 5* 34'" 55". 14, Table III,

Right ascension, or sid. time, at Ann Arbor mean noon.

Mean time interval after noon,

Gain of sidereal on mean time. Table III,

Equivalent sidereal interval after noon.

Sidereal time.

For Ann Arbor, and similarly for other stations, the

quantity L x 9^.8565 = 55*. 02 is a constant, and is held

in mind by the computer.

Likewise, the experienced computer writes down the

four necessary quantities and combines them all in one

addition, thus

:

22* 0'»31».75

55 .02

11 45 20.40
'

1 55.87

9 48 43.04

18. To convert sidereal time into mean time.

If the sidereal time at the preceding mean noon (formed

as before) be subtracted from the given tin\e, the result

is the sidereal interval after mean noon. This interval

converted into the equivalent mean time interval is the

mean time desired.

Example. On 1891 Feb. 20, the sidereal time at Ann
Arbor is 9'* 48"* 43*. 04. What is the mean time ?

* It must be remembered that for a station east of Greenwich the

'

quantity L x 9*.8566 is negative.

,W:
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Right ascension mean sun at Gr. mean noon, Feb. 20, 22* 0"» 31'.75

Change in 5* 34" 55».14, Table III,

Right ascension, or sid. time, at Ann Arbor mean noon, 22

The given sidereal time, 9

Sidereal interval after mean moon, Feb. 20, 11

Gain of sidereal on mean time. Table II,

Ann Arbor mean time, Feb. 20'* 11

It should be noted that in the original statement of this

example, the date 1891 Feb. 20 is the astronomical mean
solar date. The observer should always record this date

with care, especially in the case of observations taken near

noon, as ambiguity may otherwise arise. It would be

well in such cases, as indeed in all cases, to record also

the civil day of the week.f Thus the statement "A day-

light meteor was observed at Ann Arbor, 1891 Dec. 21,

at sidereal time 18'' 2"* 30*," is ambiguous to the extent of

one sidereal day, since on that solar day the sidereal time

was twice equal to 18'' 2"* 30*. The record may refer to a

phenomenon observed just after noon of Monday or just

before noon of Tuesday. If the record were written

" Monday, 1891 Dec. 20 " there would be no uncertainty.

* This quantity is to be subtracted from the one directly following.

t Inasmuch as one may easily record an erroneous day of the month,

many observers have the admirable practice of beginning their records

with the day of the week. Thus, " "Wednesday, 1891 July 8 " suffices for

observations made on Wednesday afternoon, or for continuous observa-

tions throughout Wednesday night ; but an isolated observation made
the next morning may be headed, "Thursday morning, 1891 July 8."



CHAPTER III

CORRECTION OF OBSERVATIONS

19. The observed directions of all bodies in the solar

system are sensibly different for observers at different

places on the earth's surface. These differences must be

allowed for before observations made at different places

can be compared. This is accomplished by reducing all

observations to the center of the earth, to which point the

data of the Ephemeris refer. A knowledge of the form

and size of the earth is therefore indispensable.

FORM AND DIMENSIONS OF THE EARTH

20. Geodetic measurements, combined with astronomical

observations, have shown that the earth is very nearly an ob-

late spheroid whose minor axis coincides with the polar axis.

Let QPQ'P' be an elliptical section of the spheroid

made by the meridian of an observer 2i,t ; A the center

of the earth ; NS the horizon ; and let

a = semi-major axis of ellipse

= AQ,
b = semi-minor axis of ellipse

= AP,

<f)
= geographical latitude* of O

= OBQ,

<f>'
— geocentric latitude of

= OAQ,

p = radius of earth a,t = A O,

ff>'
~

<f>
= reduction to geocentric

latitude = A OB,

X, y = rectangular coordinates of

= AC, CO. Fig. 2

* It frequently happens, especially in mountainous regions, that the

plumb-line is not normal to the theoretical ellipsoidal surface of the earth,

23
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From a discussion of all available observations, Bessel

found
a = 3962.802 miles, b = 3949.555 miles;

and therefore, for the eccentricity of a meridional section,

QPQ'P',
e = 0.0816967.

21. Griven the geographical latitude of a point on the

earth's surface, required the corresponding geocentric lati-

tude.

The equation of the ellipse (Fig. 2) is

- + ^ = 1. (56)

Differentiating, and substituting

tan d} = , tan </>' = ^,
dy X

we obtain the desired relation

tan «^' = -^ tan <^ = (1 - e^) tan <fi. (57)

The reduction to the geocentric latitude, <^' —
(f),

can

be expressed in terms of ^. If the equation

tan X — p tan y,

which is identical in form with (67), be developed in

series it becomes \_Chauvenet''s Plane Trig.., § 254]

x - ?/ = 9sin2?/ + ^92sin4y ^ i^8gin6y ^ ...^

in which
»-l

^
J9 + 1

owing to the fact that the local irregularities of surface and of density be-

come appreciable. In such cases, the zenith determined by the plumb-

line will not coincide with the theoretical zenith. Consequently the

latitude and longitude, determined astronomically, will differ from the

latitude and longitude determined geodetically. The geodesist has to

deal with both systems, but the astronomer uses only the former.
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Substituting from (57) the values corresponding to 2;,

y, and JO, and dividing by sin 1" in order to express the

result in seconds of arc, we obtain the practically rigorous

formula

<l>' -<f> =- 690".65 sin 2 <^ + 1".16 sin 4
<f>. (58)

22. To find the radius of the earth for a given latitude.

Substituting x = p cos </>' and y = p sin tf)' in (56) and

eliminating b by (57), we obtain

\c
cos^^

(59)
f cos (<f>

—
<f>')

COS
<f>'

In using this equation make a = 1, since the equatorial

radius is taken as the unit.

The values of
(f>'
—

(f>
and of p for the positions of the

principal observatories are given on pp. 482-485 of the

American Ephemeris for 1891.

Formulae (58) and (59) give the correct values of

<f>'
—

<f>
and p at sea level. It is evident that the alti-

tude of the observer above sea level must be taken into

account. The slight corrections thus rendered necessary

may be computed from elementary principles of trigo-

nometry.

PARALLAX

23. The geocentric or true place of a star is that in

which it would be seen by an observer at the center of the

earth. The apparent* or observed place is that in which

it is seen by the observer on the surface of the earth.

The parallax of a star is the difference between its true

and apparent places. It may also be defined as the angle

at the star subtended by the radius of the earth drawn to

the point of observation. This angle is approximately a

* The terms true and apparent are used in a relative sense only. In

reference to parallax, the true place is the place corrected for parallax.

In reference to refraction, the apparent place is affected by refraction, the

true place is corrected for refraction ; and similarly in other subjects.
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maximum for an observer at a given place when the star is

seen in his horizon. It is then called the horizontal paral-

lax. When the observer is at a place on the earth's equator

this angle is called the equatorial horizontal parallax.

24. To find the equatorial horizontal parallax of a body.

In Fig. 3 let S' be a body in

the horizon of a point on the

earth's equator. Then if

a — equatorial radius of the earth

= C0,

A = body's distance from the earth's

center = CS',

IT = equatorial horizontal parallax

= CS'0,
Fig. 3

we have Bin IT = —

•

A (60)

The astronomical unit of distance is the mean distance

of the earth from the sun. Using (60) with a and A
expressed in terms of this unit, the American Ephemeris

tabulates the values of it for the moon [page IV of the

month] and the planets [pp. 218-249] ; employing values

of a and the earth's mean distance from the sun such that

the sun's mean equatorial horizontal parallax is 8". 848.

Recent researches have shown that 8". 80 is probably a

much more correct value of the sun's mean equatorial

horizontal parallax, and the superintendents of the prin-

cipal astronomical annuals have agreed to use that value in

computing ephemerides from about the year 1900.

25. To find the parallax in zenith distance, the earth

being regarded as a sphere.

In Fig. 3 let

z' = apparent zenith distance of a star S = ZOS,

z = true zenith distance = ZCS,

p = parallax in zenith distance = CSO = z' — z.
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Then from the triangle COS

27

sin o a „.
-:—^ = — = sin IT,

sm z A
or

sin p = sin tt sin z*.

For all bodies except the moon we can write

p = TT sin /.

For the sun we have, from (60),

(61)

(62)

and (62) becomes
A '

8".8 . .

p = sinr. (63)

The values of log A are tabulated in the Ephemeris,

page III of the month.

In the case of observations made with a sextant, sur-

veyor's transit, or other similar instrument, we may-

assume A equal to unity, and take the required value of p
from the following table computed from

p = 8".8 sin z'

:

(64)

z' P z' P

0° C'.O 50° 6".7

10 1 .5 60 7 ,6

20 3 .0 70 8 .3

30 4 .4 80 8 .7

40 5 .7 90 8 .8

For refined observations (61) is not sufficiently exact,

and recourse must be had to formulae which consider the

earth as a spheroid.

26. Griven the true zenith distance and azimuth of a star,

required its apparent zenith distance and azimuth, the earth

being regarded as a spheroid.
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Let the star be referred to a system of rectangular axes

whose origin is at the point of observation, the positive

axis of X being directed to the south point, the positive

axis of y to the west point and the positive axis of z to

the zenith. Let

X', Y , Z' = the rectangular coordinates of the star,

A' = the star's distance from the observer,

A' — its apparent azimuth,

z' = its apparent zenith distance.

Then
X' = A' sin z' cos A',

P = A' sin z' sin A',

Z' = A' cos z'.

Again, let the star be referred to a second system of

rectangular axes parallel to the first, the origin being at

the center of the earth. Let

X, Y, Z = the rectangular coordinates of the star,

A = the star's distance from the origin,

A = its true azimuth,

z = its true zenith distance.

Then
X = A sin z cos A,

Y = A. sin z sin A,

Z = A cos 2.

Let the coordinates of the point of observation referred

to the second system be X", Y", Z". From Fig. 2 it is

seen that

X" = p sin (<^ - <f>'), Y" = 0, Z" = p cos
(<f,

- <^')-

Now
X' ^X - X", Y =Y -Y", Z' = Z - Z'\

and therefore

A' sin z' cos A' = A sin z cos ^ — p sin (</> — ^'),

A' sin 2' sin ^' = A sin 2 sin ^, (65)

A' cos 2' = A cos z — p cos (<^ — «^').

.
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These equations completely determine A', 2' and ^', and

therefore the parallax z' — z and A' — A. It is better,

however, to transform them so that the parallax can be

computed directly. For this purpose, divide the equations

through by A and put

•^ A'

also substitute from (60), a being unity,

sin TT = —

,

A
and we have

/sin z' cos A' = sin 2 cos A — p sin tt sin (<^ — ^'), (66)

/sin z' sin ^' = sin 2 sin J., (67)

/cos 2' =cosz — psinTTCOS («^ — «^'). (68)

From (66) and (67) we obtain

/sin 2' sin {A' — A) =psin7rsin (<^ — <^')sin4, (69)

/sin 2' cos (^A' — A) = sin 2 — p sin tt sin (^ — <^') cos A. (70)

Putting

^ ^ p sin TT sin (<^ - <i>') .^^^
sin z

(69) and (70) give

is.n{Ai-A)= "^sin^
^^2)

1 — m cos ^

Multiplying (69) by sin 1 (A! - ^) and (70) by

cos ^ (J.' — J.), adding the products and dividing by

cos ^ (J.' — ^), we obtain

/sin 2' = sin 2 - p sin tt sin(<i - <^')
cos^(^' + ^) . ^73)

Let us assume

tan y = tan (<^ - ^,)
cos K-4 ^ + ^ ) (74)' ^^ ^ cosU^'-^)

then

/sin 2' = sin z — p sin tt cos (<^ — <;^') tan y. (75)

This combined witli (68) gives
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/ sin (z' -z)= p sill TT cos ( <^ - <^')
•'^^" (^ " y\ (76)

cosy

/cos (z' -z) = l- p sin TT cos (<^ - <^')
cos (2 - y) ,7^^

cos y
Assume

„ ^ p sin TT cos (<l>
-

<l>')
^

.^g^
cos y

and we have

tan (z' -z)^ nsm(z-y)
^ .79^

1 — n cos (z — y)

Formulse (71) and (72) rigorously determine the par-

allax in azimuth, and (74), (78) and (79) the parallax in

zenith distance. We may abbreviate the computation by
writing (74) in the form

y = (<^ - <l>')
cos A, (80)

which is in all cases sufficiently exact.

27. Given the apparent zenith distance and azimuth of a

hody^ required its true zenith distance and azimuth, the earth

being regarded as a spheroid.

From (68) and (75) we obtain

sin (z' -z) = P S"' TT cos (<^ - <^') sin (z' - y)
cosy

for which, since
<f>
— 4>' and 7 are small angles, we can

write
sin (2' — 2) = p sin tt sin (2' — y), (81)

in which 7 is given without sensible error by

y = (<^-«^')cos^'. (82)

We obtain from (66) and (67)

sin (A' - ^)
^psinTTsin (<^ - <^') sin ^^^ .33.

sin 2

in which the value of z is found by the solution of (81).

FormulcB (82), (81) and (83) completely solve the prob-

lem. For all known bodies save the moon we may write
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2' - 2 =p7rsin (/ - y), (84)

A' — A = pTT sin (<^ — <}>') sin A' cosec 2'. (85)

An application of the formulae of this section will be

found in § 89, in the determination of longitude by lunar

distances.

28. To find the parallax of a body in right ascension and

declination. Let

a = the body's geocentric right ascension,

8 = " " declination,

t = " " hour angle.

A= « " distance.

0'= " apparent right ascension,

8'= " " declination,

f = " *' hour angle,

A'= « " distance,

= the observer's sidereal time.

By methods similar to those used in developing equa-

tions (72), (74) and (79), we may obtain the correspond-

ing equations,

p sin TT cos
<f>'

sin t

tan (a — a') = ^ » (86)
cos 8 — p sill TT cos

<f>'
cos t

^^
t_an^^^oy_(a-aOi^

(87)
' cos ld-^(a + a')]

^

tan (8 - 8') = psin,rsin<^;sin(y-8)
^gg^

sin y — p sin tt sin
<f>'

cos (y — 8)

These rigorously determine the parallax in right ascen-

sion, a — a', and the parallax in declination, 8 — B', when
the geocentric coordinates are the known quantities. If

the apparent coordinates a', B' and t' have been obtained

by observation, and a, B and t are unknown, we substitute

a', B' and t' for a, B and t in the second members, and

solve. The resulting approximate values of the parallax

furnish nearly correct values of a, B and t. Employing

these in a second solution of the equations we shall obtain

sufficiently exact values of the parallax.
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29. For all known bodies except the moon the values

of TT, a — a' and h — h' will be very small, and we may
write (86), (87) and (88), without sensible error, in the

form
8". 8 p cos <i>' sin t ,„„^

a - a' = ^ ^ » (89)A • cos 8 ^ ^

tan <f)'

tan y = ^, (90)
' cos < ^ ^

g_g,^8".8psin<^'sin(y-8)^
(91)A • siu y

in which A is expressed in terms of the astronomical unit

of distance. These formulae will determine the parallax

satisfactorily also if t and h are replaced by t' and S', for

which case an application of them will be found in § 155.

At the fixed observatories it is customary 'to construct

tables which greatly facilitate the computation of paral-

laxes. The equations (89) and (91) may be written

(a - a') A = 8".8 p cos <^' sin t' sec 8', (92)

(8 - 8') A = 8".8 p sin <^' cosec y siu (y - 8')- (93)

The second members of these equations are the parallaxes

in right ascension and declination of an imaginary body at

distance unity when observed, at a given station (p, ^'),

in the direction t\ 8'. They are called parallax factors.

Their values are generally computed and tabulated, at a

given observatory, for every 10" of hour angle and every

degree of declination. When a body is observed at any

hour angle and declination, the corresponding parallax

factors may be obtained by interpolation from the tables.

The parallaxes, a— a' and S — S', may then be determined

by dividing the parallax factors by the distance A of the

body, as will be seen from (92) and (93). An application

of these formulae will be found in § 154.

REFRACTION

30. It is shown in Optics that when a ray of light

passes obliquely from one transparent medium into an-^
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other of greater density, it is refracted from its original

direction according to the following laws :

(a) The incident ray, the normal to the surface which

separates the two media at the point of incidence, and the

refracted ray, lie in the same plane.

(b) The sines of the angles of incidence and refraction

are inversely as the indices of refraction of the two media.

A ray of light coming from a star to an observer is

assumed to travel in a straight line until it reaches the

upper limit of the earth's atmosphere. It then passes

continually from a rarer to a denser medium until it

reaches the earth's surface. If we regard the earth as a

sphere, it follows from (a) and (6) that the path of the

ray is a curve whose direction constantly approaches the

center of the earth.

Let Fig. 4 represent a section of the earth and its atmos-

phere made by a vertical plane

passing through the point of

observation and a star S.

The path of the ray, S ah . . n . .

0, lies wholly in this plane and

is concave towards the earth.

The apparent direction of the

star is 0S\ a tangent to the

curve at the point of observa-

tion. The true direction is that

of a straight line joining

and S. The difference of these

directions is the refraction. It

appears that refraction increases

the altitude, and decreases the zenith distance, of a star,

but in general does not affect its azimuth.*

Fig. 4

* It is known that appreciable deviations in the azimuth are sometimes

produced by refraction, especially in observations made very near the hori-

zon ; but as they are due to abnormal and unknown arrangements of the

strata of air, there is unfortunately no direct method of eliminating them.

D
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The amount of the refraction depends upon the density

of the air, which is a function of the atmospheric pressure

and temperature. Our knowledge of the state of the

atmosphere is very imperfect. The theory of refraction

is complex and tedious, refraction tables to be reliable

must be largely empirical, and we shall not attempt an

investigation of the subject.

The Pulkowa Refraction Tables given in the Appendix,

Table I, are based on the formula

r = fjits^nz^BTYy^^ai, (94)

in which z is the apparent zenith distance, /it, A^ \ and o- are

functions of the apparent zenith distance, B depends on the

reading of the barometer, T depends on the temperature of

the column of mercury as indicated by the attached * ther-

mometer, 7 depends on the temperature of the atmosphere

as indicated by the external thermometer, i depends on the

time of the year, and r is the refraction in seconds of arc.

For logarithmic computation (94) takes the form

log r = log /x + log tan z + ^ (log i? + log T) + A log y + i logo-. (95)

Observations should not be made at a greater zenith

distance than 82° 30', beyond which the amount of the

refraction is uncertain. We can compute an approximate

value of the refraction, however, by means of the Supple-

ment to Table I, which tabulates the values of log fi tan z.

Example. Given the apparent zenith distance 81° 11' 0",

Barom. 29.420 inches. Attached Therm. + 46°.5 F., Ex-

ternal Therm. + 22°.3 F., time May 20, required the true

zenith distance.

log5 - 0.00260 log /A 1.74132

logr - 0.00055 log tan z 0.80937

log fir - 0.00315 AlogBT 9.99683

A 1.00.53 A logy 0.02456

logy + 0.02337 t log o- 9.99995

X . 1.0510 logr 2.57203

log<r 0.00026 r 6' 13".3

t -0.21

* That is, attached to the barometer.
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The true zenith distance is therefore 81° 17' 13". 3.

If the true zenith distance is given and the apparent

zenith distance is required, an approximate value of the

latter is first found by applying the mean refraction, Table
II, Appendix, to the true zenith distance, and then the

refraction is given by (94) as before.

Table II is constructed from (94) for a mean state of

the atmosphere, viz.: Barom. 29.5 inches, Att. Therm.

50°. 0, and Ext. Therm. 50°. 0. The factor <t' is neglected.

In case no tables are available an approximate value of

the refraction is given by

983 6

460 + i

tanz, (96)

in which h is the barometer reading in inches, t the tem-

perature of the atmosphere in degrees Fahr., and z the

apparent zenith distance.* For zenith distances less than

75° it represents the Pulkowa refractions within a second

of arc, except for extreme states of the atmosphere. It is

especially convenient for field work in which an aneroid

barometer is used.

When the barometer and thermometer have not been

read a roughly approximate value of the refraction is

given by
r = A'tanz, (97)

in which K is the value of the refraction at zenith distance

45° for the mean barometer and thermometer readings at

the place of observation ; but for large zenith distances

and extreme states of the atmosphere it cannot be used

safely. The value of K for sea-level stations in the tem-

perate zones is about 58".

* This formula is due to Professor Comstock : The, Sidereal Messenger,

April, 1890.
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REFRACTION IN RIGHT ASCENSION AND DECLINATION

31. The change in zenith distance due to refraction

gives rise to corresponding changes in right ascension

and declination. We know the general relations existing

between these coordinates, whence the relations existing

between their increments may be found by differentiation.

From (7), 8 and z being the only variables, we have

cos 8d8 = — (sin z sin
(f>
+ cos z cos

<f>
cos A)dz,

which reduces by means of (2Mf to

d8 = — cos q dz. (98)

Differentiating (30), regarding z, 8 and t as variables, we
obtain

— sin zdz= (cos S sin <^ — sin S cos
<f>

cos t) d8 — cos S cos <^ sin t dt,

which by (31), (32) and (98) reduces to

cos Sdt = sin q dz. (99)

But from (41) dt = — da. Making this substitution and
replacing dz by the refraction r, (98) and (99) become

d8 = -r cos q, (100)

da = — r sin q sec 8. (101)

These corrections reduce from the apparent to the true

values of a and 8. If the true place is given and the

apparent place is required, the signs of the corrections

must be reversed.

To compute r we must know z. If z and A are given,

q is determined by (29) ; if t and 8 are known, q and z are

determined by (36) and (37).

DIP OF THE HORIZON

32. At sea the altitudes of celestial objects are meas-

ured from the visible sea horizon. This is below the true
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horizon by an amount depending on the elevation of the

observer's eye above the surface of the sea.

Let Fig. 5 represent a section of the earth made by a

vertical plane passing through the eye of an observer at

0. OH' is a line in the visible

horizon, OH is the corresponding

line in the true horizon, andHOW
is the dip of the horizon. Let

X = the height of the eye above the

water ui feet = OA.,

a = the radius of the earth in feet

= AC,

D — the dip of the horizon = HOH'
= OCB.

We may write

OB V2 ax + x2

Fig. 5

tan D =
CB

(102)

aP'
But — is a very small quantity and may be neglected.

Tan D may be replaced by D tan 1". The apparent dip

is affected by refraction. The amount of this refraction

is uncertain, but an approximate value of the true dip

is obtained by multiplying the apparent dip by the factor

0.92. The mean value of a is 20888625 feet. Introduc-

ing these quantities in (102) it reduces to

D = 59" y/x in feet, (103)

by which amount the measured altitude must be decreased.

A convenient rule, much used by navigators, follows

approximately from (103), thus :

The dip in minutes of arc is expressed by the square

root of the number of feet that the observer's eye is above

the water. To illustrate, if the observer's eye is 30 feet

above the water, the dip is very nearly 5'. 5.

The dip must in all cases be subtracted from the ob-

served altitude in order to obtain the true altitude.
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SEMIDIAMETER

33. When we observe a celestial body having a well-

defined disk, as in the case of the sun and moon, the

measurements are made with reference to some point on

the limb, and the position of the center is obtained by

correcting the observation for the angular semidiameter

of the body.

The geocentric semidiameters of the sun, moon and

major planets are tabulated in the Ephemeris. The appar-

ent semidiam«ter of the moon, however, is appreciably

different for different altitudes, on account of its nearness

to the earth, and its value must be determined.

34. To find the apparent semidiameter of the moon.

Let Fig. 6 represent a section

made by a plane passing through

the observer 0, the center of the

moon M, and the center of the

earth C, the earth being considered

a sphere.* Let

S = the moon's geocentric semidiameter

= MCB,
S' = the moon's apparent semidiameter

= A OM,
A = the distance of the moon's center

^^- ^ from the earth's center = CM,
A' = the distance of the moon's center from the observer = OM,
TT = the equatorial horizontal parallax of the moon,

p = the parallax in zenith distance = OMC,
z = the moon's true zenith distance = ZCM,
z' = the moon's apparent zenith distance — ZOM.

Then we can write

sin S' A sin (z-\-p)
, cos 2 sin p= — = i^

—

-J-^ = cos p -\ *-.

sm S A' sm z sin z

* The maximum error produced by neglecting the eccentricity of the

meridian even in the case of the moon never exceeds 0".06.
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From (61)
sin p = sin TT sin z'

; (104)

therefore

sin S' = sin S ( cos p + sin tt cos z ). (105)
\ sin 2/

(104) and (105) furnish very nearly an exact solution

of the problem. For our purpose, and for all ordinary

observations, we can write

S' = S (1 + sin TT cos z). (106)

35. To find the contraction of any semidiameter of the sun

or moon, produced hy refraction.

The apparent disk of the sun or moon is not circular,

since the refraction for the lower limb is greater than

for the center, and that for the center is greater than for

the upper limb. It will be sufficiently exact to assume

the disk to be an ellipse whose center coincides with the

center of the sun or moon.

The contraction of the vertical semidiameter is found by

taking the difference of the refractions for the center and
the upper or lower limb.

The contraction of the horizontal semidiameter for all

zenith distances less than 85° is very nearly constant and

equal to about 0".25. For our purpose it may be neg-

lected, and we shall not investigate the subject.

The contraction of any semidiameter making an angle q
with the vertical semidiameter is readily obtained from the

properties of the ellipse. Thus let

a = the horizontal semidiameter,

h = the vertical semidiameter,

S" = the inclined semidiameter,

and we have

S" sin q = X,

S" cos q = y;

whence S" = ab

Va^ cos^ q + b^ sin^ q

(107)
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ABERRATION

36. The observed direction of a star differs from its

true direction in consequence of the motion of the ob-

server in space. The ratio of the velocity of light to the

velocity" of the observer is finite, and a telescope changes

its position appreciably while a

ray of light is passing from the

objective to the eyepiece.

In Fig. 7 let be the center

of the objective and E the center

of the eyepiece of a telescope at

the instant when a ray from a

star S reaches the point 0. If

OE' represent the direction and

velocity of the ray, and AB rep-

resent the direction of the ob-

server's motion and EE' his

velocity, the telescope will be in

the position 0'E' when the ray

reaches E' . While the true direc-

tion of the star is E' 0^ the apparent direction is E'O'.

The change in the apparent direction, OE' 0\ is called the

aberration. The star is apparently displaced toward that

point of the celestial sphere which the observer is momen-
tarily approaching. To find the amount of this displace-

ment let (Fig. 7)

y = BE'O = the angle between the true direction of the star and

the line of the observer's motion,

y' = BE'O' = the angle between the apparent direction of the star

and the line of the observer's motion,

dy = y — y = the correction for aberration in the plane of the star

and the observer's motion,

V = OE' = the velocity of light,

V = EE' = the velocity of the observer.
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Then from the triangle EOE' we have

sin (y — y') = sin dy = — sin y'.

But c?7 is always very small and we can write, without

sensible error,

dy =
FsinT V' (108)

which determines the correction for aberration when v^ V
and 7 are known.

37. The velocity of the observer is made up of three

parts: those due to the motion of the solar system as a

whole, to the annual motion of the earth in its orbit, and

to the diurnal rotation of the earth. The first need not

be considered, since it affects the apparent place of a star

by a constant quantity. The second gives rise to annual

aberration, which will be referred to in Chapter IV.

The third gives rise to the diurnal aberration. This is

a function of the observer's position on the earth, and

win be treated as a correction to be applied to observed

coordinates.

38. To find the diurnal aberration in hour angle and dec-

lination.

In Fig. 8 let SENWhQ the horizon, jE'^TTthe equator,

L the earth, a star whose

hour angle is t and declina-

tion 8, ^OTTa great circle

through and the east point

of the horizon. Owing to w\
the diurnal rotation of the

earth the observer is moving

directly toward the east point,

and therefore the star's ap-

parent place is shifted east-

ward in the plane ^OTFto some point 0'
. The aberration

in this plane is 00\ whose value is given by (108). It

Fig. 8
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only remains to find the corresponding change in hour

angle (7(7', and in declination CO — Q' 0'

.

In the triangle EOO we have

CO = 8, CE = 90° + <, ECO = 90°.

Now let

OE = y, CEO = w, C'C = dt, CO - CO' = dS,

and we can write
sin 8 = sin y sin o), (109.)

sin i cos 8 = — cos y, (HO)

cos « cos 8 = sin y cos w. (HI)

(110) and (111) give by differentiation, t, B and 7 being

variables,
— sin t sin 8 c?8 + cos t cos 8dt = sin y rfy,

— cos < sin Sd8 — sin < cos 8dt — cos y cos w dy.

Eliminating dS and then dt^ we obtain

cos 8dt = (sin y cos < — cos y sin ( cos w) rfy,

sin 8 rfS = — (sin y sin < + cos y cos < cos to) dy,

which, by means of (109), (110) and (111), reduce to

dt = cos t sec 8 -^> (112)
smy

d8 = - sin < sin 8 -P-- (113)
siny

The value of the factor .

'^
is given by (108) from

the known values of v and V. For an observer at the

earth's equator it is 0".31 ; in latitude ^ it is 0".31 C08<f>.

Substituting this value in (112) and (113) we obtain

dt = + 0".31 cos
<f)

cos t sec 8, (114)

<?8 = - .31 cos
<t>

sin t sin 8, (115)

which are the corrections to be applied to the observed

hour angle and declination.

When the star is observed on the meridian, ^ = 0, and

(114) and (115) become

dt = 0".31 cos <^ sec 8, (116)

d8 = . (117)
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39. To find the diurnal aberration in azimuth and alti-

tude.

The problem is identical with that in § 38 save that the

horizon is the plane of reference, instead of the equator.

If in (114) and (115) we replace t hj A and h hy h we
obtain the desired corrections,

dA =+ 0".31 cos <^ cos A sec h, (118)

dh = — .31 cos <^ sin ^ sin ^, (119)

which are the corrections to be applied to the observed

azimuth and altitude.

SEQUENCE AND DEGREE OF CORRECTIONS

40. In applying the corrections considered in this chap-

ter it is necessary that a proper sequence be followed.

In all eases the refraction must be applied first, its amount
being obtained by the methods of § 30 and § 31.

Except in a few cases the diurnal aberration may be

neglected.

Observations on the sun or moon refer to points on the

limb. They must be reduced to the center. In the case

of the moon the reduction is made by formulse (106) and

(107); of the sun, by (107).

The parallax is now determined by the methods of

§§ 25-29. It is wholly inappreciable for the stars.

The degree of refinement to which these corrections

should be carried, can be stated only in a general way.

Usually it is sufficient to compute the corrections to one

order of units lower than that to which the observations

have been made. Thus, in reducing an observation made
with a sextant reading to 10", the corrections should be

computed to the nearest second. If the mean of a large

number of sextant readings is employed, it is advisable

to carry the corrections to tenths of a second ; and simi-

larly in other cases.



CHAPTER IV

PRECESSION—NUTATION— ANNUAL ABERRATION
— PROPER MOTION

41. In the preceding chapter we considered the correc-

tions necessary to be applied to observed coordinates in

order to reduce them to the center of the earth. We
shall now consider the corrections which must be applied

to the apparent geocentric coordinates.

While the relative positions of the fixed stars change

very slowly,— and in most cases no change at all has

been detected,— their apparent coordinates are continually

varying. These variations are divided into two general

classes, secular and periodic.

Secular variations are very slow and nearly regular

changes covering long periods of time ; so that for a few

years, and in some cases for centuries, they may be re-

garded as proportional to the time.

Periodic variations are changes which pass quickly from

one extreme value to another, so that they cannot be treated

as proportional to the time except for very short intervals.

The planes of the ecliptic and equator are subject to

slow motions, which give rise to variations in the obliquity

of the ecliptic and in the positions of the equinoxes. The
coordinates of the stars therefore undergo changes which

do not arise from the motions of the stars themselves, but

from a shifting of the planes of reference and the origin

of coordinates. The forces producing these changes are

variable, and while the variations of the coordinates are

progressive, they are not uniform. They may be regarded
44
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as made up of two parts, viz.: a secular variation called

precession, and a periodic variation called nutation.

Owing to annual aberration [see § 37] the stars are

not seen in their true positions, but are apparently dis-

placed toward that point of the sphere which the earth

is approaching, thus giving rise to periodic variations of

their apparent coordinates.

In the case of stars having proper motions,— that is,

apparent individual motions due to motions of the stars

themselves, and to the motion of the solar system in space,

— their positions on the sphere change, and give rise to

secular variations of the coordinates.

42. In order that we may define the positions of the

ecliptic and equator at any instant, it will be convenient

to adopt the positions of these planes at some epoch as

fixed planes, to which their positions at any other instant

may be referred. Let their positions at the beginning of

6/ the year 1800 be adopted as the mean ecliptic and equator

ao that instant.

The true equator and ecliptic at any instant are the real

equator and ecliptic at that instant. Their positions are

affected by precession and nutation.

The positions of the mean equator and ecliptic at any

instant are the positions these circles would occupy at

that instant if they were affected by precession, but not by

nutation.

The mean place of a star at any instant is its position

referred to the mean equator and ecliptic of that instant.

It is affected by precession and proper motion.

The true place of a star is its position referred to the

true equator and ecliptic. It is the mean place plus the

variation due to nutation.

The apparent place of a star is the position in which it

would be seen by an observer (at the center of the earth). It

is the true place plus the variation due to annual aberration.
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43. In solving the problems considered in the following

chapters we require to know the apparent right ascensions

and declinations of the celestial objects at the instants

when they are observed. The apparent places of the sun,

moon, major planets, and several hundred of the brighter

stars, are given in the Ephemeris at intervals such that

their places for any instant may be obtained by interpola-

tion. But occasionally it is desirable to employ stars not

included in this list. If the mean places of these stars are

given in the Ephemeris for the beginning of the year *

they must be reduced, by means of the proper formulae, to

the apparent places at the times of observation. If we
observe stars which are not contained in the Ephemeris

we must refer for their positions to the general Star

Catalogues, which contain their mean places for the begin-

ning of a certain year. These must be reduced to the

corresponding mean places for the beginning of the year

in which the observations are made, and thence to the

apparent places as before. We shall now very briefly

consider the matters essential to these reductions.

PRECESSION

44. If from the figure of the earth we subtract a sphere

whose radius is equal to the earth's polar radius, there will

remain a shell of matter symmetrically situated with refer-

ence to the equator. The attractions of the sun and moon
on this shell tend to draw it into coincidence with the

ecliptic. This tendency is resisted by the diurnal rotation

of the earth. The combined effect of these forces, is to

shift the plane of the equator, without changing the

obliquity of the ecliptic, in such a way that its intersec-

tion with the ecliptic continually moves to the west. . This

causes a common annual increase in the longitudes of the

* This does not refer to the ordinary or tropical year, but to the fictitious

year, which begins at the instant when the sun's mean longitude is 280°.
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stars, which is called the luni-solar precession. It affects

the longitudes, right ascensions and declinations, but not

the latitudes.

The attractions of the other planets upon the earth tend

to draw it out of the plane in which it is revolving around

the sun. The effect is to shift the plane of the ecliptic in

such a way that its intersection with the equator moves to

the east. This causes a small annual decrease of the right

ascensions of the stars, called the planetary precession. It

affects the longitudes, latitudes and right ascensions, but

not the declinations.

The attractions of the planets produce a slight change

in the obliquity of the ecliptic. Its annual effect upon the

coordinates of the stars is combined with the luni-solar and

planetary precession, the whole being called the general

precession.

45. These motions are illustrated in Fig. 9. Let OVq

be the fixed or mean ecliptic at the beginning of the year

1800, UVq the mean equa-

tor, and Vq the mean equi-

nox. By the action of the

sun and moon in the time t

the equator is shifted to the

position ^Fj, the vernal

equinox moves from Vq to

Fj, and VqVi is the luni-

solar precession in the in-

terval t. By the attraction

of the planets the ecliptic is Vs ^V'

shifted to the position CV^, ^"^* ^

the vernal equinox moves from V^ to V, and T\V is the

planetary precession in the interval t. Let

€q = the mean obliquity of the ecliptic for 1800 = CFqCT",

Cj = the obliquity of the fixed ecliptic for 1800 + t =CV^Q,

€ = the mean obliquity of the ecliptic for 1800 + t =C VQ,
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{j/ = the luni-solar precession in the interval t = V^Vi,

)St = the planetary precession in the interval t = Fj F,

i/^j= the general precession in the interval t =CV — CVf^.

The values of these quantities are, according to Struve

and Peters, referred to the beginning of the year 1800,

Co = 23° 27' 54".22,

€^ = €0 + 0".0000073o t%

c =
£o
- 0".4738 t - 0".0000014 fi,

j/r = 50".3798 t - 0".0001084 i%

,> = 0".15119 t - 0".00024186 t^,

)/^i=
50".2411 I + 0".0001134 t^.

46. Given the mean right ascension and declination (a, 8)

of a star for any date 1800 + ^, required the mean right

ascension and declination (a', 8') for any other date

1800 +«'.

In Fig. 9 let CV^ be the ecliptic of 1800, V^Q the

mean equator of 1800 + ^, and V^Q the mean equator of

1800 + t' . If we distinguish by accents the values given

by (120) for the time t' we have

FiV^^f -xp, Q Fi F2 = 1 80° - Ci, Q V, l\ = c/.

Now let

QVj = 90° -z, QF2 = 90" + z', Fi QF2 = e,

and we have [Chauvenefs Sph. Trig.^ § 27]

cos \ 6 sin h (z' + z) = sin 5 ('A'
~

"A) ^'^^ ^ (^i' + ^1)'

cos J ^ cos ^ (z' + 2) = cos 2 (1/^ — l/') cos ^ (c/ — Cj),

sin \ 6 sin \ (z! — 2) = cos i (if/ — \p) sin ^ (cj' — Cj),

sin ^ ^ cos ^ (z' — 2) = sin J (i/^' — i/^) sin ^ (cj' + Ci).

But ^ (z' — 2) and ^ (e^' — e^) are very small arcs, and we
can write

tan ^ (2' + 2) = tan i (i/^' - \j;) cos J (c/ + Cj), (121)

i (2' - 2) = ^ ^^' ~ ^1^
, (122)

^ '^ ^ tan Kf - )/.) sin i (e,' + Cj)
"^ ^

sin ^$ = sin i (i/r' - ij/) sin J (c/ + c^), (123)

which determine z\ z and very accurately.
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V and V are the positions of the mean equinox for

1800 + t and 1800 + t'. Representing the planetary pre-

cessions V^V and FgV by -d- and d-'^ we have

FQ = 90° - 2 - '^, V'Q = 90° + z' - ,'/
;

and since for the star S we have a = FTtf and a' = VM',
we obtain

MQ = 90°-z -,^-a, M'Q = 90° + z' - >'}' - a'.

Then if P and P' are the poles of the mean equator at

1800 -f t and 1800 + t', and if we put

^ = a + ,? + 2, ^' = a' + .y - 2', (124)

we have, in the triangle SPP\

PS = 90° - 8, P'S = 90° - 8', PP' = V^QVo = ^,

5PP' = 90° - MQ = A, SP'P = 90° + M'Q = 180° - A'.

Substituting these in (2) and (3) we obtain

cos 8' cos^' = cos 8 cos^ cos 5 — sin 8 sin^,

cos 8' sin^' = cos 8 sin^,

from which we deduce

cos 8' sin(^'—^)= cos 8 sin^ sin ^ (tan 8 + tan J^ cos^), (125)

cos 8' cos (J. ' — ^4) = cos 8— cos 8 cos .4 sin^(tan8+ tan J^cos^); (126)

or, putting
j9 = sin ^(tan8 + tan^^cos^), (127)

we have

tSin(A'~A)= ^'''"^— (128)
1 — p cos A

From the triangle SPP' we can also obtain [^Chauvenefs

Sph. Trig., § 22]

Having determined e^, t/t, ,9, e^', i/r' and t5^' from (120),

z, z' and 6 from (121), (122) and (123), and A from (124),

we obtain a' from (127), (128) and (124), and Z' from

(129).
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Example. The mean place of Polaris for 1755.0 was

a = 0* 43"' 42M1, 8 = + 87° 59' 41".ll

;

neglecting proper motion what will be its mean place for

1900.0?

In this case i = — 45 and t' = + 100, and we find, from

(120),
e, 23° 27' 54".23488 c/ 23° 27' 54".29350

^ - 37 47 .31 f + 1 23 56 .90

a - 7 .29 1?' + 12 .70

and therefore

K^i' + O 23° 27' 54".26

U'A'-'/') + 1 52 .10

K^i'-^i) + .02931

tan \ {\p' — \f)
8.248163 sin^ 9.3125989

cos i (e/ + Ci) 9.962513 logp 9.6050849

\iz> + z) 0° 55' 50".14 cos^ 9.9906400

logK^i'-O 8.467016 logp cos A 9.5957249

cot \ (if/ - ijj) 1.751837 Sub* 0.2176761

cosec^ (e/ + e^) 0.399910 tan (A' -A) 9.1353599

log I (z'-z) 0.618763 A' -A 7° 46' 36".67

K^'-^) 4".16 A' 19 37 47 .01

z' 0° 55' 54".30 a! = A' +z' - 1?' 20 33 28 .61

z 55 45 .98 a' 1»22"'13«.91

sinK"/^-"/') 8.248095

sin I (e/ + ci) 9.600090 A' + A 31° 28' 57".35

^0 0° 24' 14".16 tanlO 7,8481943

a 10 55 31 .65 cosi(^' + A) 9.9833991

A =a + Z + -& 11 51 10 .34 sec ^(A' — A) 0.0010009

tan^d 7.848194 tanK8'-8) 7.8325943

cos^ 9.990640 H8'-8) 0° 23' 22".85-

tan ^ ^ cos ^ 7.838834 8' -8 46 45 .7a

tan 8 1.4557773 8' 88 46 26 .81

Add* 0.0001049

sin 6 8.1492027

logp 9.6050849

47. Required the annual precession in right ascension and
declination at any time 1800 + t.

* ZecWs Tafeln der Additions- und Subtractions-Logarithmen are used

here.
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The precession for one year being small we can put, in

(124) and (125), without sensible error,

8' = 8, sin(^'-^) = (^'- J)siiir', sin^ = sina,

sin e tan ^6 = 0, sm6 = 6 sin 1",

• and obtain

A' -A=a' -a+(^' -'»)-(z' + z) = 6smatan8. (130)

For (121) and (123) we may write

Z' + Z=(}j/' — if/) COS Cj,

6 —(}p' — \p) sin €y

Substituting these in (130) and dividing by t'— f, we obtain

r = T X. cos e, h '- ^ sin c, sm a tan o.

t' -t t' -t * e -t f -t ^

Similarly, from (129) we can obtain

8' -8 xb< -^ ._ Y. r sin £, cos a.
tf - t t' -t

In order to express the rate of change in a and h at the

instant 1800 + * we must let t' — t become very small.

Passing to the limit we have

rf« = #cose, -^ + ^sineisinatan8,
(it dt " dt dt

— = -* sin c, cos a.
dt dt

If we let dt equal one year, and put

#rfi? d\J/ .

cos c, —, n = -i^ sin c„
dt ^ dt dt ^

we obtain for the annual precession at 1800 + 1

— = ni + n sin a tan 8, (1^1)
dt

da

dt

^ = ,I cos a. (132)
dt

From (120) we find

^ cos ci = (50".3798 - 0".0002168 1) cos e^

dt

= 46".2135 - 0".0001989 t,

— = 0'M512 - 0".0004837 1
;

dt
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and therefore

m = 46".0623 + 0".0002849 1,

n = •20".0607 - 0".0000863 1.

(133)

(134)

Except for stars near the poles and for long intervals of

time, formulae (131) and (132) are very convenient for

computing the whole precession between two dates. Thus

if it is required to determine the precession in a and B from

1800 + ^ to 1800 + t,' we first obtain approximate values of

a and 8 for the middle date 1800 + ^ (^ + ^')- Using these

values we then compute the annual precession for this

date, which is approximately the average annual precession

for the interval t' — t, and thence the whole precession by

multiplying this by t' — t.

It is convenient to have the values of m and n given by

(133) and (134) tabulated as follows

:

Date To'» iQgi^n log n

1750 3 '.06987 0.126348 1.302439

1760 3 .07006 0.126330 1.302421

1770 3 .07025 0.126311 1.302402

1780 3 .07044 0.126292 1.302383

1790 3 .07063 0.126274 1.302365

1800 3 .07082 0.126255 1.302346

1810 3 .07101 0.126236 1.302327

1820 3 .07120 0.126218 1.302309

1830 3 .07139 0.126199 1.302290

1840 3 .07158 0.126180 1.302271

1850 3 .07177 0.126162 1.302253

1860 3 .07196 0.126143 1.302234

1870 3 .07215 0.126124 1.302215

1880 3 .07234 0.126106 1.302197

1890 3 .07253 0.126087 1.302178

1900 3 .07272 0.126068 1.302159

1910 3 .07291 0.126050 1.302141

1920 3 .07310 0.126031 1.302122

1930 3 .07329 0.126012 1.302103

1940 3 .07348 0.125994 1.302085
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Example. The mean place of /3 Ononis for 1850.0 was

a = 5* 7"* 19».856, 8 = - 8° 22' 44".74
;

neglecting proper motion, find its mean place for 1900.0.

Using the values of m and n for the middle date 1875.0,

and a and S for 1850.0, we may obtain very nearly the

annual precession in a and S for 1862.5 from (131) and

(132).
log tV n .126115

sin a 9 .988429

tan 8 9 .168186„

log 9 .282730„

number - 0».19175 log n 1.302206

Jj m 3 .07224 cos a 9.357543

^ 2 .88049
dt

^ 4".568
dt

The approximate coordinates of the star for 18

therefore
a = 5» 8™ 31«.87, 8 =-- 8° 20' 50".5.

Using these values we have

log x^s n .126115

sin a 9 .988955

tan 8 9 .166514„

log 9 .281584„

number - 0M0124 log n 1.302206

^m 3 .07224 cos a 9.347705

— 2 .88100
dt

^ 4".46592
dt

These are very nearly the exact values of the annual pre-

cession for 1875.0, and the mean place for 1900.0 is there-

fore
a' = 5» 9™ 43».906, 8' = - 8° 19' 1".44,

which is practically identical with that given by the rigor-

ous method of § 46.

In many star catalogues the annual precession in a and

8 is given for each star for the epoch of the catalogue, by

means of which the approximate place of the star for the
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middle time is found at once, and the first approximation

made above is avoided.

PROPER MOTION

48. The proper motion of a star has already been defined

to be an apparent motion of the star itself on the surface

of the sphere. It is assumed to take place in the arc of a

great circle, and to be uniform. The proper motions in

right ascension and declination are the components of this

motion in and perpendicular to the equator. They are

variable since the equator is a moying circle, and it must

be specified to which equator they refer.

When a star's place is required to be known very accu-

rately, its position should be taken from as many catalogues

as possible. In order that the data thus obtained may be

properly combined, a thorough knowledge of the subject

of proper motion is essential.

49. Given the observed mean places (a, K) of a star for

1800 + t and («', 8') for 1800 + t\ required the annual

proper motion.

Starting from the first observed place and computing the

precession for the interval t' — t by the methods of § 46

or § 47, let the resulting place for 1800 + t' be a^, h^. The
discrepancies «' — a^ and 8' — Sj are due to proper motion,

and the annual proper motion for the interval is

da' = '^L:^^, rf8' = §lziA, (135)
t' - t t' -t ^ ^

referred to the equator of 1800 + t'

.

Starting from the second observed place, computing the

precession for the interval t — t\ and applying it to a' and

8', let the resulting place for 1800 + i be ag, h^. The
annual proper motion for the interval is

da = 2^^^, f/8 = izJj, (136)

referred to the equator of 1800 + t.
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Example. The mean places of Polaris for 1755.0 and

1900.0 given in NeweomVs Standard Stars are

for 1755.0, a = 0* 43™ 42M1, S = + 87° 59' 41".ll,

for 1900.0, a' = 1 22 33 .76, S' = + 88 46 26 .66;

determine the proper motion referred to the equator of

1900.0.

By applying the precession to the place for 1755.0 the

place for 1900.0 was found to be, § 46,

tti = P 22'» 13».91, Si = + 88° 46' 26".81,

and therefore, by (135), the annual proper motion of

Polaris referred to the equator of 1900.0 is

da' = + 0».1369, d8' = - 0" .00103.

50. Given the proper motion (da., dB) referred to the

equator of 1800 + t, required the corresponding proper

motion (^da', c?8') referred to the equator of 1800 + i',

and vice versa.

When the star S (Fig. 9) moves on the surface of the

sphere it causes variations in all the parts of the triangle

SP'P, except P'P. The solution of the present problem

requires a knowledge of the relations existing between

these variations.

If in a spherical triangle ABC we suppose all the parts

except a to vary, we can write l_Chauvenet''s Sph. Trig.,

§ 153, (286) and (287)]

sin cdB = sin Adh — sin a cos A sin B cosec A dC,

dc = cos A Jb + sin a sin B rfC

Substituting in these, from § 46,

a.=PP' = 6, dh = d(SP) = - d8, dc = d(SP') = - d8',

dB = d(SP'P) = rf(180° - 4') = - da', dC = d(SPP') = dA = da,

and putting 7 for A, we obtain

cos 8' da' = sin ydS + cos 8 cos yda, (l-^^)

rfS' = cos yd8 — cos 8 sin yda, (138)
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in which 7 is determined by-

sin y = sin $ sin A sec 8' = sin 6 sin A' sec 8, (139)

cos y = (cos ^ — sin 8 sin 8') sec 8 sec 8'. (140)

These determine the proper motion for 1800 + t' in terms

of that for 1800 + t.

From (137) and (138) we obtain

cos 8da = cos 8' cos y da' — sin y rfS', (141)

d8 = cos 8' sin y da' + cos y (/8', (142)

which determine the proper motion for 1800 + t in terms

of that for 1800 + t'.

Example. The proper motion of Polaris referred to the

equator of 1900.0 is

da! = + 0'.1369 = + 2".0535, dh' = - 0".00103.

Deduce the proper motion referred to the equator of 1755.0.

Using e and A from § 46 and h' = + 88° 46' 26".66 we
find, from (139) and (140),

sin y = 9.131493, cos y = 9.995984,

and therefore from (141) and (142) we obtain

da^+ 1".2480 = + 0'.0832, rf8 = + 0".00493.

51. Criven the proper motion (da^ c?8) and the mean place

(a, B') of a star for the epoch 1800 + t, required its mean
place (a', h'^ for the epoch 1800 + t^

.

The proper motion for the whole interval t' — t'ls, first

computed and applied to the mean place for 1800 + t.

With the resulting values of a and S, which we shall de-

note by ttj and Sj, the precession is computed and applied

to ttj and 8j. The result is the star's mean place for

1800 + 1'.

If the proper motion (da'., dS'") is given for the epoch

1800 + t', we first compute the precession, using a and 8,

and then apply the proper motion for the interval.
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Example 1. Given the mean place and proper motion of

Polaris for 1755.0,

. a = 0»43'"42'.ll, 8 = + 87° 59' 41". 11,

rfa=+0'.0832, dh = + 0".00493,

required the mean place for 1900.0.

The proper motion for the interval is

+ 0'.0832 X 145 = + 12'.06, + 0".00498 x 145 = + 0".71.

Therefore
ai = 0* 43'" 54M7, 8i

= + 87° 59' 41".82.

Employing these values in the example of § 46 we find

for 1900.0

a! = 1» 22"' 33'.76, S' = + 88° 46' 26".66.

Example 2. The proper motion of ^ Ononis referred

to the equator of 1900.0 is

da= - 0'.00027, d8= - 0".0061.

Include this in the example of § 47.

The proper motion for the interval is

- 0».00027 X 50 = - 0«.013, - 0".0061 x 50 = - 0".30;

and therefore the mean place for 1900.0 is

a' = 5» 9"* 43».893, 8' = - 8° 19' 1".74.

52. It will be seen from § 47 that the annual precession

is a slowly varying quantity. The change in its value in

one hundred years is called the secular variation of the

precession. Many star catalogues give not only the mean

place and annual precession of a star but also the secular

variation and proper motion. In this case the reduction

of the mean place of a star from the epoch of the catalogue

1800 + t to that for 1800 + t' is readily made. For if

p = the annual precession for the epoch 1800 + t,

Ap = the secular variation,

/M = the proper motion,
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the reduction for the interval t' — t will be the annual

change for the middle time multiplied by t' — f, or

which form applies both to the right ascension and the

declination.

Example. NewcornVs Standard Stars gives the follow-

ing data for /3 Orionis for the epoch 1850.0

:

a = 5* T™ 19* .856, 8 = - 8° 22' 44".74,

p = + 2* .87999, p'= + 4".5687,

Ap = + 0* .00400, ^p' = - 0".4109,

^ = - 0' .00025, /a' = - 0".0061

;

required the mean place for 1900.0.

Substituting these values in (143) we obtain the reduc-

tions for the interval,

for a, + 144».038, for 8, + 222".99,

and the mean place for 1900.0 is, therefore,

a' = 5* 9™ 43».894, 8' = - 8° 19' 1".75.

53. Many of the problems of practical astronomy require

that the star places be determined with the utmost accu-

racy. In such cases the observed coordinates of a star—
along with the corresponding epochs of observation— are

taken from as many star catalogues as possible, and com-

bined by the method of least squares in order to determine

the most probable values of the star's coordinates and

proper motion at any given time.

Suppose the star's right ascension is given in n cata-

logues for the epochs of observation t^, t^, ••• t^, and that

the most probable values of the right ascension and proper

motion are required for the epoch t. Apply the precession

up to the instant t to each of the catalogue positions, and

let the results be a^, a^, ••• a„. Let /a be the star's proper

motion referred to the equator of the epoch t, and let a be
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its right ascension at that instant. Then we shall have

n equations

a = a^ + fj.(t — ty),

a = ttg + ju, (< — ^2))

a = a„+ ix{t - t„),

(144)

from which to determine the most probable values of fi

and a. To put them in a form suitable for solution, let

fiQ and ao be approximate values of fi and a, and let Afi

and Aa be small corrections to them, so that

M = /^o + V> (145)

a = tto + Aa

;

(146)

then equations (144) take the form

(/ - /i) A/x - Aa + [tti + (< - ?i) fif,
- ao] = 0, 1

(t - Q A/t - Aa + [a„+ (< - <„) /x^ - ao] = 0. I

(147)

The solution of these equations will determine the most

probable values of A/jl and Aa, and therefore of fi and a,

provided the n original data are of equal weight. If they

are of unequal weight, as will almost always be the case,

the equations (147) must be multiplied by the proper

factors before proceeding to their solution.

The weights to be assigned to the data from different

star catalogues depend upon many factors. The instru-

ments and methods of observation and reduction employed,

the skill of the observers, and the number of individual

observations upon which the printed results depend, must

all be taken into account. Familiarity with the methods

of meridian circle work and considerable experience with

star catalogues are necessary acquirements for assigning

suitable weights. Tables of relative weights in the intro-

ductions to Newcomb's Standard Stars and Boss's 500

Stars will serve as partial guides.
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Example. It is required to determine the most probable

values of the right ascension and the proper motion in right

ascension of S Trianguli, for the epoch 1900.0.

Observations of this star are contained in twenty or

more well-known catalogues. We shall select ten of them,

as below. The first column contains the name of the cata-

logue, the second the epoch of observation, the third the

catalogue right ascensions corrected for the precession up
to 1900.0, and the fourth the relative weights. Except

for small errors of observation, the discrepancies in column

Catalogue
Epoch of

Obs'n
a W't a 1900.0

Auwers-Bradley 1755.0 9ft lO" 43'.72 2 2» lO" 57'.03

Lalande 1794.9 47.03 1 56.69

Piazzi 1812.9 48.42 1 56.43

Abo 1830.0 50.43 2 56.86

Edinburgh 1842.9 51.68 2 56.93

Pulkowa 1855.0 52.72 4 56.86

Greenwich N. 7 yr. 1864.0 53.63 4 56.94

9yr. 1872.0 54.36 4 56.93
" 10 yr. 1880.0 55.07 4 56.91

Cincinnati 1890.6 55.95 4 56.82

three are due to proper motion. Comparing the first and

last observations, we find for an approximate value of the

annual proper motion, fiQ= + 0^.09 ; and therefore for an

approximate value of the right ascension at 1900.0,

Uq = 2'' 10™ 56*.80. We may now write equations (147),

thus:

145.0 A/A - Aa - 0.05 = 0,

9.4 A/ix - Aa ± 0.00 = 0.

(148)

Multiplying these equations by the square roots of their

respective weights, and combining them, we obtain
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+ 94792 A/1 - 1283 Aa - 82.07 = 0*1

- 1283 A/X+ 28Aa+ 0.29 = 0, J
^ ^

and thence

A/A = + 0'.0019, Aa = + 0».077.

Substituting these and fi^ and a^ in (145) and (146), we
obtain the most probable proper motion and right ascen-

sion for 1900.0,

fi = +0'.09 + 0'.0019 = + 0».0919,

a = 2* lO" 56».80 + 0'.077 = 2 lO" 56«.877.

The last column of the table above contains the indi-

vidual right ascensions corrected for proper motion. The
modern observations are in good agreement.

An entirely analogous method would be used to deter-

mine the most probable values of the declination, and the

proper motion in declination.

REDUCTION TO APPARENT PLACE

54. The mean place of a star for the beginning of the

required year having been obtained by any of the above

methods, it remains to determine its apparent place for

any given instant. Thus if we desire the apparent place

for a time r from the beginning of the year, we obtain the

mean place by adding the precession and proper motion

for the interval r, then the true place by adding the nuta-

tion, and finally the apparent place by adding the annual

aberration. The reduction to the mean place could be

performed as before ; we could determine the nutation by

evaluating the long and tedious nutation formulae, the

deduction of which belongs to physical astronomy; and

we could obtain the annual aberration from equations

deduced by methods analogous to those of § 38. But
this process is laborious, and the general equations are

never used except in a few highly specialized problems.

* Another computer may not exactly reproduce these coefficients, on

account of neglected decimals.



62 PRACTICAL ASTRONOMY

By judiciously combining the terms of the various for-

mulas involved in the reductions, Bessel was able to pro-

pose two simple and closely related methods, which are

now in common use. We shall consider them in the

following section.

55. Given the mean place (a, 8} of a star for the begin-

ning of the year^ required its apparent place (a', 8') for any
instant r*

{a) The reduction is made by the formulae

a' = a + T/u, -V Aa + Bb + Co + Dd + ^ E, (150)

8' = 8 + Tfi' + Aa' + Bb' + Cc' + Dd', (151)

in which t/a and t/a' represent the proper motion and Aa
and Aa' the precession in the interval r; Bb + Jg^^and
Bb' the nutation, and Cc + Dd and Cc' + Dd' the annual

aberration at the instant r. J., B, C, i>, and E are the

Besselian star-numbers. They are functions of the time.

The American Ephemeris gives their general values on

p. 280, and tabulates the logarithms of J., B^ (7, and D for

every day of the year on pp. 281-284. The value of E is

given in the same place. It is a slowly varying quantity

whose value never exceeds 0".05, and it can generally be

neglected.

a, b, c, d, a', b', c', and d' are BessePs star-constants.

They are functions of the star's place and the obliquity of

the ecliptic, and are defined by the equations

a = ^m + ^n sin a tan 8, a' = n cos a, i

b = xV cos a tan 8, b' = — sin a, I

c = j\ cos a sec 8, c' = tan e cos 8 — sin a sin 8, |

^ ^

rf = jJj sin a sec 8, d' = cos a sin 8. J

In some star catalogues the logarithms of the star-con-

stants are given for each star. But these values become
obsolete in a few years, and must be computed anew from

(152), since m, n, a, 8, and e are variable quantities.

* See § 43, footnote, and the American Ephemeris, p. 280.
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Example. Required the apparent place of 38 Lyncis for

the upper transit at Ann Arbor, 1891 March 16.

From the Berlinei' Jahrbuch, p. 180, star 135, we find for

1891.0,

a = 9* 12™ 3'.671, 8 = + 37° 15' 48".43,

ix.= - .0030, ix'
= - .114.

The upper transit occurs therefore at Washington side-

real time 9'' 39'", or 1'' 53™ before mean midnight. Taking

the values of log J., etc., from the American Ephemeris,

p. 281, for this instant, and the values of log a, etc., from

the Jahrhueh, p. 329, star 135, the computation is con-

veniently arranged as below.

log a 0.5744 log ft 8.5764„ logc 8.794.3„ logd 8.7485

log .4 9.0221„ log B 0.5804„ log C 1.2722„ log D 0.1239

logo' 1.1734„ log 6' 9.8254„ logc' 8.7763„ logd' 9.6533,

a 9» 12'» 3«.671 S + 37° 15' 48".43

T/A - 0.001 TIX' - .02

Aa - 0.395 Aa' + 1 .57

Bb + 0.143 Bb' + 2 .55

Cc + 1.165 Cc' + 1. 12

Dd + 0.075 Dd' — .60

isE - 0.003

a' 9 12 4.6.55 8' + 37 15 53 .05

This method of reduction should be employed when the

star-constants are given in the catalogues with sufficient

accuracy, or when the apparent places of the same star are

required for several dates.

In using the data of reduction furnished by the British

and French annuals and catalogues, the computer must be

careful to follow their formulae ; for while the form of

reduction usually agrees with the American and German

form, the notation is different, A and B in the one corre-

sponding to C and -Z) respectively in the other. This

applies also to the American Ephemeris previous to 1865.

(J)')
When the catalogues do not give the values of log

a, log b, etc., and when only one or two places of the same
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star are desired, another form of reduction is preferable.

If we put

f=i^mA+^E, hsinH^C,
g sin G = B, h cos U = D,

gcosG = nA, t = Ctane,

the formulae (150) and (151) become

a' — a + Tfx +/+ ^ ^ sin (G + a) tan 8 + j^j A sin (H + a) sec'8, (153)

8' = 8 + T/x' + g cos (G + a) + h cos (// + a) sin 8 + i cos 8, (154)

in which the terms involving /, g and G denote the pre-

cession and nutation, and the terms involving h, H and t,

the annual aberration. These auxiliary quantities are

called the independent star-numbers. The values of t, /,

(7, H^ log g^ log h and log i are given in the American

Epliemeris, pp. 285-292, for every day of the year.

Example. Required the apparent place of 38 Lyncis for

the upper transit at Ann Arbor, 1891 March 16.

Using the data given above, the computation is con-

veniently made as below.

G 240° 59' logs' 0.6387 a 9* 12- 3' .671

a 138 1 cos (G + a) 9.9757 T/i - .001

H 274 3 / - .326

log A 1.2733 (1) + .072

logA 8.8239 cos {H + a) 9.7887 (2) + 1 .240

logs' 0.6387 sin 8 9.7821 a' 9 12 4 .65ft

sin {G + a) 9.5126 log (4) 0.8441

tan 8 9.8813 8 +37° 15' 48" .43

log(l) 8.8565 log I 0.9096„ V - .02

cos 8 9.9008 (3) + 4 .12

logi^ 8.8239 (4) + 6 .9a

log A 1.2733 (5) - 6 .46

sin {H + a) 9.8969 8' + 37 15 53 .05-

sec 8 0.0992

log (2) 0.0933



CHAPTER V

ANGLE AND TIME MEASUREMENT

56. The degree of refinement to which an observer can

carry the determination of his geographical position and

the time depends in general upon the accuracy attainable

in pointing the telescope, in reading the angle corresponding

to the pointing, and in noting the time when the pointing

is made. In general, these elements are of equal impor-

tance. For any given telescope the first depends upon the

observer's skill. In the last two the observer's skill is

assisted by various mechanical devices.

THE VERNIER

57. An angle is usually measured by means of a gradu-

ated circle, or arc, whose center is at the vertex of the

angle. Closely fitting upon the graduated arc of the cir-

cle and centered with it is another graduated arc called the

vernier, which is so arranged upon an arm that it moves

with reference to the circle when the telescope moves.

The angle to be read is that included between the zero

line of the circle and the zero line of the vernier. The

zero of the vernier generally falls between two consecutive

lines on the circle. The angle corresponding to the whole

divisions can be read off at once ; it is the object of the

vernier to determine the fractional part of a division. It

is so constructed that n of its divisions are equal in length

to n — \ divisions of the circle. If we let

d = the value of one division of the circle,

d' = the value of one division of the vernier,

F 65
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we have

or
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(n -\)d = nd',

d-d' = ^. (155)

d — d' is called the least reading of the vernier. If now
the zero of the vernier coincides with a division line of the

circle, the circle reading gives the required angle at once.

If the first vernier line coincides with a circle line, the zero

of the vernier in d — d' beyond a line of the circle, and the

circle reading must be increased by the least reading. If

the second vernier line is in coincidence with a circle line,

the circle reading must be increased by twice the least

reading, etc. For example, the value of a division of a

sextant is 10', and 60 divisions of the vernier correspond

in length to 59 divisions of the circle. The least reading

is 10' -=- 60 = 10". In measuring a certain angle the zero

of the vernier fell between 42° 40' and 42° 50', and the

26th line of the vernier coincided with a circle line. The
required reading was 42° 40' + 26 x 10" = 42° 44' 20".

In practice no computation is necessary, the number of

minutes being read directly from the numbers on the

vernier.

In the accompanying illustration, Fig. 10, there are two

verniers on the upper graduated arc : one to the right of

Fig. 10

A, to be used in connection with the inner set of readings

on the circle numbered from 10° to the right ; and one to
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the left of A, to be used in connection with the outer set

of readings numbered from 140° to the left. From (155)

it follows that the least reading of the vernier is 1'. The
circle reading, when read to the right, is 27° 25' ; and

when read to the left, 152° 35'.

THE READING MICROSCOPE

58. In very fine instruments the vernier is replaced by a

reading microscope, the optical axis of which is perpendicu-

lar to the plane of the graduated circle. The microscope

is so adjusted that an image of the circle divisions is

formed in the common focus of the objective and ocular.

In the same focus are two very fine micrometer wires

(usually spider-lines) which either intersect at a small

angle, or are parallel and close together. In the former

case they are adjusted so that the bisector of their acute

angle is parallel to the image of the circle graduation seen

nearest the middle of the field of view. In the latter

case, the wires are made parallel to that graduation. They
are stretched upon a light frame whose plane is parallel to

the plane of the circle, and which may be moved in that

plane in the direction at right angles to the visible gradu-

ations by turning a fine micrometer screw. Fixed upon

the projecting end of the screw is a cylindrical micrometer

head. This is graduated into either 60 or 100 parts, and

is used for reading the fractional parts of a revolution of the

screw, the readings being made with reference to a fixed

index. The whole number of revolutions is indicated

by a scale sometimes inside, and again outside, of the

microscope.

Let the micrometer screw be turned until the wires are

in the center of the field of view and the reading of the

head is zero. The position now occupied by the wires is

the fixed point of reference. The angle to be read is that

included between the zero of the circle and this point. If
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now the micrometer wires coincide with a line of the circle

the desired reading is obtained at once. If they fall be-

yond a certain line the fractional part of a division is deter-

mined by moving the wires from the point of reference

into coincidence with the line. The distance passed over

is determined from the micrometer reading and the known
angular value of one revolution of the screw. In setting

the wires upon any circle division the last motion of the

micrometer should always take place in the direction which

increases the tension on the screw, any lost or dead motion

being thereby avoided.

When the microscope is properly adjusted, a whole

number of revolutions of the screw corresponds exactly to

the distance between two consecutive circle lines. But
this adjustment once made does not remain, owing to

changes of temperature, etc. It is customary to determine

from time to time the error which arises and allow for it.

This is called the error of runs. Its value is found by

measuring several divisions in different parts of the circle,

and taking the mean of the measures in order to eliminate

as far as possible any errors in the graduations. To illus-

trate, let a circle be graduated to 5', let the value of a revo-

lution of the screw be 1', and let the head be divided into 60

parts. Let the mean of the measures of ten divisions in

different parts of the circle be 4 revolutions and 56.4 divi-

sions of the head. The correction for runs per minute of

arc is + 3".6 -r- 5 = + 0".72. Let an angle be read such

that the circle graduation employed is 62° 15', and the

micrometer reading is 2 rev. 15.9 div. The correction for

runs is + 1".6, and the angle is, therefore, 62° 17' 17".5.

Better still, the program of observations should if pos-

sible include microscope readings on the two graduations

nearest the middle of the field of view, instead of on only

one. Each complete observation would then furnish the

necessary data to correct for error of runs. This excellent

practice is illustrated in the example of § 126.
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ECCENTRICITY

59. The center of the arm which carries the vernier or

microscope never coincides ex-

actly with the center of the

circle, and an error due to this

eccentricity enters into the circle

readings. In Fig. 11, let 0" be

the center of the vernier, (7 the

center of the circle, I) the point

of intersection of the circle DAB
and the line CC produced, A
the zero point of the circle, and

Jf the position of the vernier or

microscope. The pointing of

the telescope corresponds to the

direction CM while the circle reading refers to the direc-

tion CM. The correction for eccentricity is therefore

CMC. To find its value let

CC = the eccentricity = e,

c = the correction for eccentricity = CMC,
M = the observed reading of the circle,

R = the true reading of the circle = M + e,

r = the radius of the circle,

ri = the angle DCA,

V = the angle A CM.

From the triangle CMC we can write

r sin e = e sin (v + rf)-

Since r is the unit.radius and e is very small, we have

Fig. 11

c = . ^,„ sin (y + rf) = e" sin (v + r;),

sin 1"
(156)

and the true reading of the circle is

R = M+e" sin (v + rj). (157)

The vernier arm MO' is often produced to the oppo-

site point of the circle, which call iHf , and carries another
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vernier or microscope. The minutes and seconds of the

circle reading at this point being obtained (a second vernier

is not necessary to determine the degrees), if M' is the

observed reading, the true reading R is given by

R = M' + c" sin (180'' + v + 7i)
= M' - e" sin (v + rj).

Combining this with (157) we have

R=\{M+ M')
; (158)

from which it appears that the eccentricity is fully elimi-

nated by taking the mean of two readings 180° apart. It

can be shown also that it is eliminated by using the mean

reading of any number of equidistant microscopes.

THE MICROMETER

60. If the angle, between two points is smaller than the

angular diameter of the field of the telescope, it is most

easily and accurately measured by means of a micrometer.

This is the same in principle as that used on the reading

microscope, save that the movable wire is usually composed

of a single thread, and is generally accompanied by other

wires. There is usually one fixed wire parallel to the

movable wire, and often at least one transverse fixed wire

perpendicular to it. The arrangement of the wires varies

to meet the requirements of different problems and the

preferences of the observers. The plane of the wires is in

the common focal plane of the objective and eyepiece of the

telescope.

The micrometer is so constructed that it can be, and

always is, rotated about the line of sight until the microm-

eter wire is perpendicular to the plane of the angle which

it is desired to measure. In the transit instrument the

movable wire of the micrometer is vertical, and in the

zenith telescope it is horizontal. [See § 110, and Fig. 20.]

The modern meridian circle is provided with both hori-

zontal and vertical micrometer wires. The filar microm-
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eter of an equatorial telescope is arranged so that the wires

can be turned into any position, and their direction may
be determined by means

of a graduated position

circle.

Figure 12 represents

the filar micrometer of the

12-inch equatorial of the
f>

Lick Observatory, by Al-

van Clark & Sons. The

wires are in the box S.

To render them visible at

night, they are illumi-

nated by the lamp Z, sup-

ported by the framework

JQRPV (designed by

Buruham), and counter-

balanced by IHF. The

graduated position circle

XY remains fixed with

reference to the telescope,

whereas the micrometer

box (and the illuminating

apparatus) may be ro-

tated about the line of

sight so as to place the

wires in any direction.

Their direction will be

indicated by the circle

readings at X and Y.

Further, by turning the

screw EE' the microme-

ter box, with the entire

system of wires, can be

moved in a direction parallel to the micrometer screw.

The system of wires may therefore be given motions

Fig. 12

\
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of rotation and translation, to place them in any desired

position.

The light from the lamp shines in the direction TO^ but

at the intersection of the tubes TO and NM there is a

diagonal mirror which reflects the light in the direction

NV into the box. The mirror may be rotated by rotating

a disk at 0, thereby varying the intensity of the illumina-

tion. If electric lighting is available, the oil lamp L should

be replaced by a small incandescent lamp, as the latter has

many practical advantages.

The distance between the fixed and the movable wires,

or the distance between two positions of the movable wire,

is indicated by the readings of the graduated micrometer

heads A and B : A indicating the whole number of revolu-

tions of the screw and B the fractional parts of a revolu-

tion. To convert the readings into arc, the value of one

revolution of the screw must be known.

61. The angular value of a revolution of the micrometer

screw depends upon the pitch of the screw and the focal

length of the telescope. It may be found in several

ways.

(a) By the methods described above, measure with the

micrometer any known angle, and divide the number of

seconds in the angle by the corresponding number of revo-

lutions of the screw.

If the distance between two stars is measured, the true

distance must be corrected for refraction. A method com-

monly employed consists in measuring the difference of

declination of two selected stars in the Pleiades when that

group is near the meridian. The positions of these stars

are very accurately known, paii-s of almost any desired

distance can be selected, and the correction for refraction

is simple.

Example. The difference of declination of d Ursce Majo-

ris and Crroomhridge 1564 was measured with the movable
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wire of the micrometer of the zenith telescope of the

Detroit Observatory, when on the meridian, 1891 March
28. Barom. 29.206 inches, Att. Therm. 68^0 F., Ext.

Therm. 37°.5 F. Find the value of a revolution of the

screw. The zenith level was read immediately after bisect-

ing each star, in order to correct for any change in the

pointing of the telescope. The value of one division

of the level is 2".74.

Star a Apparent 5

Level

Miciometer

n s

d Ursce Maj.

Gr. 1564.

9*25"'

9 33

+ 70° 18' 46".5

+ 69 44 12 .7

40.4

41.3

18.7

19.5

48.566

2.598

The correction for level (see § 62) is 0.85^= 2".3, by

which amount the measured distance must be increased, or

the difference of the declinations decreased. The differ-

ence of the refractions for the two stars is 0".7, by which

amount the difference of the declinations must be decreased.

The corrected difference of the declinations is 34' 30". 8.

Therefore the value of one revolution of the screw is

45".05.

(5) A more accurate value is obtained by observations

on one of the close circumpolar stars. The telescope is

directed so that the star is just entering the field, and will

be carried through the center by its diurnal motion. The
micrometer is revolved so that the micrometer wire will be

perpendicular to the diurnal motion of the star when it

passes through the center of the field. The wire is set just

in advance of the star, the time of transit of the star over it

is noted, and the micrometer is read. The wire is moved
forward one revolution, or a part of a revolution, and the

transit observed as before. In this way the observations

are carried nearly across the field.
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In Fig. 13, let P be the pole, EP the observer's meridian,

*S'*S" the diurnal path of a star, AS the position of the

micrometer wire when at the center

of the field and coincident with an

hour circle PM^ and BS' (parallel to

^*S') any other position of the wire.

Now let tHq be the micrometer reading,

Iq the hour angle, and T^ the sidereal

time when the star is at S^ and let m,

t and T be the corresponding quanti-

ties when the star is at S\ and let

R be the value of one revolution of

the screw. Through *S" pass an arc

of a great circle S' O perpendicular to ^*S'. Then in the

triangle CS'P, right-angled at C, we have

CS' = (m - 7nf,)R, S'P = 90° - 8, CPS' = t-^=T-T^]

and we can write

sin \_(m, — mf^K] = sin {T — T^) cos 8 ;

or, since (m — mQ)R is always a small angle,

M' M E
Fig. 13

(m - mo)R = sin (T- T^)

Similarly, for another observation,

(m' - wio)/? = sin(r/- T^)

cos 8

sin
1"'

cos 8

sin 1"

(159)

Combining these to eliminate the zero point,

(m' - m)R = sin ( T' - T^) -^^ -sm(T- T.) -^2il, (160)
sin 1" sin 1"

from which the value of Ji is obtained. The micrometer

readings are supposed to increase with the time.

The times of transit are supposed to be noted by means

of a sidereal time-piece. If its rate [§ 64] is large it must

be allowed for. If a mean time-piece is used the intervals

T— Tq must be converted into sidereal intervals.

The resulting value of R is slightly in error on account

of refraction, since the star is observed at unequal zenith
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distances. But the effect of refraction is inappreciable if

the observations are made near the meridian. The method

is therefore advantageous for a meridian instrument with

a micrometer in right ascension, the star being observed

at upper or lower culmination. However, any variations

in the azimuth or level constants of the instrument during

the progress of the observations introduce errors in the

results. If a and h are the values of these constants at

the beginning of the series of transits and a' and V their

values at the close of the series, it can be shown from the

theory of the transit instrument [Chapter VII], that the

distance between the first and last positions of the wires

has been decreased by the quantity

{a! - a) sin (<^ ^ S) + {V - b) cos (<^ T 8), (161)

which divided by the corresponding difference of the

micrometer readings is the correction to the value of one

revolution of the screw. The lower signs are for lower

culmination.

The azimuth constants are determined by observing suit-

able pairs of stars before and after the series of micrometer

transits is taken, according to the methods described later.

The level constants are determined by the method of § 62.

The variations of azimuth and level may be considered to

be uniform and proportional to the time. For a meridian

instrument properly mounted the variation of the azimuth

may be neglected without a sacrifice of accuracy.

Example. Polaris was observed at lower culmination

at Ann Arbor, 1891 March 28, to determine the value of a

revolution of the micrometer screw of the transit instru-

ment. The micrometer was set at every three-tenths of a

revolution, and one hundred and fifty transits observed.

The times were noted by means of a sidereal chronometer

which was 16'" 30*.6 slow. The position of Polaris was

a = 1» 17"* 46«.0, 8 = + 88° 43' 40".25,
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American Ephemeris, p. 304 ; and therefore the chronom-

eter time of lower culmination was T^ = 13'' I'" 15*.4. A few

of the observations and their reduction are given below.

Each printed observation is the mean of three consecutive

original observations.

m T T--To T-To sin (r— To) (m — nio)R

7.8 12*23'^ 12».3 — 38'" 3».l - 9° 30' 46".5 9.218194„ - 756".83

8.7 25 17.3 35 58.1 8 59 31 .5 9.193953„ 715 .75

9.6 27 19.7 33 55.7 8 28 55 .5 9.168793„ 675 .46

10.5 29 22.0 31 53.4 7 58 21 .0 9.142070„ 635 .15

11.4 31 22 .0 29 53.4 7 28 21 .0 9.114111„ 595 .55

20.4 51 42.3 9 33.1 2 23 16 .5 8.619771„ 190 .80

21.3 53 43.3 7 32 .1 1 53 1 .5 8.516822„ 150 .53

22.2 55 46.0 5 29.4 1 22 21 .0 8.379348„ 109 .69

23.1 57 47 .0 3 28 .4 52 6 .0 8.180547„ 69 .40

24.0 59 50.0 - 1 25.4 -0 21 21 .0 7.793121,. - 28 .44

25.8 13 3 54.0 + 2 38.6 + 39 39 .0 8.061960 + 52 .82

26.7 5 58.3 4 42.9 1 10 43 .5 8.313268 94 .21

27.6 7 59.5 6 44.1 1 41 1 .5 8.468092 134 .55

28.5 10 0.0 8 44.6 2 11 9 .0 8.581389 174 .66

29.4 12 3.7 10 48 3 4 42 4 .5 8.673281 215 .82

38.4 32 24.3 31 8.9 7 47 13 .5 9.131914 620 .48

39.3 34 28.3 33 12 .9 8 18 13 .5 9.159630 661 .20

40.2 36 32.2 35 16 .8 8 49 12 .0 9.185629 702 .16

41.1 38 34.0 37 18.6 9 19 39 .0 9.209722 742 .21

42.0 13 40 37.0 + 39 21 .6 + 9 50 24 .0 9.232735 + 782 .60

Subtracting the 1st from the 11th, the 2d from the 12th,

etc., we have

m' — m {m'-m)R R V 1)2

18.0 809".65 44".981 — 0".065 0.0042

18.0 809 .96 44 .998 -0 .048 0.0023

18.0 810 .01 45 .001 -0 .045 0.0020

18.0 809 .81 44 .989 -0 .057 0.00.32

18.0 811 .37 45 .076 + .030 0.0009

18.0 811 .28 45 .071 + .025 0.0006

18.0 811 .73 45 .096 + .050 0.0025

18.0 811 .85 45 .103 + .057 0.0032

18.0 811 .61 45 .089 + .043 0.0018

18.0 811 .04 45 .058 + .012 0.0001

i? = 45 .046 2v2 = 0.0208

Probable error * = ± 0.674-Jo^
\10X9

= ± 0".010.

* See Appendix C, § 1.
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By reducing the whole series of transits the value of R
and its probable error were found to be

R = 45".059 ± 0".006.

From the level readings h = -\- o'M7, h' = + 7".05; and

from observations for azimuth on ^ Cassiopeice and 4 H.

Draconis, and on Bootis and 36 IT. Cassiopeice, a= — 9".15,

a' = — 8".79. Substituting these in (161) and dividing

by 46, the difference of the first and last micrometer read-

ings of the original' series, we have as a correction to My
- 0".017, and therefore

R = 45".042 ± 0".006.

There is an indication from the individual results for M
that its value increases as the micrometer readings in-

crease. This irregularity should be fully investigated by

further observations, and allowed for in refined observa-

tions if it proves to be real.

The value of a revolution is affected by changes of tem-

perature. To determine the rate of change, observations

should be made on several nights at widely different tem-

peratures. If H is the value of a revolution at the temper-

ature T, Mq the value at the temperature 50°, and x the

correction to Hq for a rise of 1° in temperature, each night's

observations furnish an equation of the form

i? = i?o + (t - 50°) X. (162)

The solution of these equations by the method of least

squares gives the most probable values of Mq and x, and

therefore of R.

(c) If the micrometer is designed for the measurement

of zenith distances, the micrometer wire being horizontal,

the observations are made at the time of the star's greatest

western or eastern elongation. This occurs when the ver-

tical circle of the star is tangent to its diurnal circle. At
this time the micrometer wire is parallel to the star's hour

circle. If ?Wq, t^ and Tq refer to the instant of greatest
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elongation and w, t and T to any other instant, the

formula (159) is applicable to this ease. At the instant

of greatest elongation the parallactic angle ZOP, Fig. 1, is

90° for western and 270° for eastern elongation, and we
can write

cos /q = tan <}> cot 8, cos z^ = sin <^ cosec 8, Tq = a 4-
'o- (163)

Set the telescope at the zenith distance Zq when the star

is just entering the instrument. Note the time of transit

over the micrometer wire ; and, as before, carry the ob-

servations nearly across the field. Any change in the

zenith distance of the telescope during the progress of

the observations will affect the resulting value of M. The

amount of the change will be indicated by the zenith level

and can be allowed for. The level should be read after

each transit is observed. If Iq is the level reading, i.e. the

reading of the level scale for the middle of the bubble, at

the time Tq, I the level reading at the time T, and d the

value in arc of a division of the level, we have

(m-m,)R^± sin (T - T,)^ + (/ - l,)d
; (164)

(m' - m,)R=± sin (T - T,)^ + (U - Q d.

and for another observation

Whence

(m'-m)R = ±sm(T'-T,)^^^Tsin(T-T,)^^^ + {l'-l)d, (165)
sin 1 sm 1

in which the lower sign is for eastern elongation. The
micrometer readings are supposed to increase with the

time for' western elongations, and the level readings to

increase towards the north.

The resulting value of H must be corrected for refrac-

tion. From the values of Zq and H, the zenith distances

corresponding to the first and last observations can be

obtained, and thence the refractions. The difference of

the refractions divided by the difference of the first and
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last micrometer readings is the amount by which the value

of R must be decreased.

If both R and d are unknown a close approximation to

the value of R is obtained by neglecting the term Q' — Vyd.

With this value of R the value of d is computed (§ 63)

and substituted in (165), and the corrected value of R
obtained. A second approximation to the value of d will

rarely be required.

THE LEVEL

62. The spirit level consists of a sealed glass tube,

ground on the upper interior surface to the arc of a circle

of large radius, and nearly filled with alcohol or ether.

The bubble of air occupying the space not filled by the

liquid is always at the highest point of the curve. There-

fore a change in the relative elevations of the ends of the

tube causes a motion of the bubble, the amount of which is

read from a scale marked on the surface of the glass. The
level is adapted to the determination of the angle which a

nearly horizontal line makes with the horizon, or the very

small angle moved over by a telescope.

The level tube is mounted and attached to astronomical

instruments in various ways, but there is one general

method of using it. Let the divisions of the scale be num-

bered in both directions from zero at the center, and let d

be the angular value of one division. If the level be placed

on a truly horizontal line— say, for convenience, an east

and west line— the center of the bubble will not be at zero,

owing to the non-adjustment of the level. If the cen-

ter is X divisions from the zero, the error of the level is

dx. Let the level be placed on a line inclined to the hori-

zon at an angle 6, and let the reading of the west end of

the bubble be w and the east end e. Then the elevation of

the west end of the line is given by

h — \(w — e)d ^ dx.
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Now let the level be reversed in direction and let the read-

ing of the west end be w' and the east end e'. Then

h = i(w' - e')d ± dx.

Combining these values of h we have

h = \{_{xv + w')-{e + e')^d; (166)

from which it appears that the error of the level is elimi-

nated by reversing. A positive value of h will indicate

that the west end of the line is higher than the east end.

Whenever it is possible the level should be read several

times, the same number of readings being made in each

position,— level direct and level reversed,— care being

taken to remove the level from its bearings after each

reading is made.

Example. The inclination of the axis of a transit instru-

ment is required from the following level readings, the

value of one division being 1".88.

w e

Direct 14.1 9.7 2?« 53.4

Reversed 12.6 11.1 2e 41.8

Reversed 12.7 11.1 * 8) +11.6

Direct 14.0 9.9 + 1.45

Sum 53.4 41.8

The axis makes an angle + 1.45 c? = + 2".73 with the

horizon, the west end being higher than the east.

In case the zero of the scale is at one end of the tube

and the numbers increase continuously to the other,

—

which is a better system,— we can show that

h = \\_{w + e)-{w> + e')-\d, (167)

in which the readings w and e for level direct correspond

to that position of the level for which the readings increase

toward the west.

* It must be noticed that there are two complete observations for de-

termining 6, and hence the divisor is 8 instead of 4.
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Example. Find the inclination" of the axis of a transit

instrument from the following level readings, the value of

one division being 2".743.

Direct Reversed

w 35.4 w' 16.3 95.3

e 12.4 e' 39.4 111.6

w 35.3 w' 16.4 8) -16.3

e 12.2 e' 39.5 - 2.037

Sum 95.3 Sum 111.6

The axis makes an angle — 2.037 d = — b" .b'd with the

horizon, the west end being lower than the east.

63. The value of one division of the level is determined

best by means of a level-trier. This consists of a hori-

zontal bar supported at one end by two bearings and at

the other by a vertical micrometer screw. The level is

placed on the bar and the readings of the micrometer

and bubble are noted. The screw is now turned and the

bubble moves to a new position. The readings of the

micrometer and bubble are again noted. The angle moved

over by the bar is known from the length of the bar, the

pitch of the screw and the difference of the micrometer

readings ; whence the angular value of one division of the

level may be obtained. If possible, the determination of

the value of a division should be made after the level tube

is fixed in its final mounting, rather than before.

The essential principles of the level-trier are well illus-

trated by Fig. 14.

Fig. 14

In the absence of a level-trier, an accurate determination

of the value of a division can be obtained by means of any

telescope provided with a micrometer in zenith distance.

To illustrate, let an equatorial be directed upon a distant
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terrestrial mark directly north or south of it, and adjust the

micrometer wire to parallelism with the horizon. Mount
the level upon the telescope so that the vertical plane pass-

ing through the axis of the level tube is parallel to the

line of sight, and so that the bubble is at one end of the

scale. The mark is bisected by the micrometer wire, and

the level and micrometer readings noted. The instrument

is then turned through an angle such that the bubble

moves to the other end of the scale. The mark is again

bisected by the wire, and the level and micrometer read-

ings noted as before. The difference of the level readings

corresponds to the difference of the micrometer readings,

whence the value of one division of the level can be

obtained from the known value of a revolution of the

micrometer screw. In general, such observations are best

made on an overcast day.

Exam'ple. The following observations were made Feb-

ruary 19, 1891, to determine the value of a division of the

striding level of the Detroit Observatory transit instru-

ment, the telescope being directed to a distant mark. The
value of one revolution of the screw is 45".042. Find the

value of a division of the level.

Level
Micrometer

Differences

d

n s Level Micrometer

20.9

2.0

1.8

20.6

1.1

20.0

20.2

1.4

17.019

17.791

17.773

16.969

18.9

18.8

0.772

0.804

0.0408 R

0.0428 R

The mean of eighteen observations gave d = 0.0417 M
± 0.0004 B = 1".878 ± 0".018.

The level tube should be thoroughly tested for irregu-

larity of curvature before using. If different portions of a.
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level give sensibly different values for a division of the

scale, it should not be used in refined observations.

The value of a division should also be determined at two

or more very different temperatures in order that a tem-

perature correction may be introduced if necessary.

A level should be adjusted by the vertical adjusting

screws so that the bubble will stand near the center of the

tube when the level is placed on a horizontal line. It

should be adjusted by the horizontal screws so that the

axis of the tube will be parallel to the line whose inclina-

tion is to be measured. This adjustment is tested by

revolving the level slightly about its bearings. If the

readings are different when the level is equally displaced

in opposite directions from the vertical plane through its

bearmgs, the adjustment is not perfect.

THE CHRONOMETER

64. A chronometer is a large and carefully constructed

watch which is " compensated " so that changes of tem-

perature have very little effect on the time in which the

balance-wheel vibrates. It is a very accurate time-piece

when properly handled, comparing favorably with the

astronomical clock, and being portable is adapted to field

work and navigation.

The chronometer correction is the amount which must be

added to the reading of the chronometer face to obtain the

correct time. It is -f when the chronometer is slow. The

chronometer rate is the daily increase of the chronometer

correction. It is -|- when the chronometer is losing. It is

not necessary that the correction and rate be small, though

it is convenient to have the rate less than ±5^ a day. The

test of a good time-piece lies in the uniformity of its rate.

The correction is generally allowed to increase indefinitely.

The chronometer correction is obtained by observations

on the celestial objects, or by comparison with a time-piece

whose correction is known. If
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ATq = the chronometer correction at a time T^,

AT = the chronometer correction at a time T,

8T = the chronometer rate,

we determine the rate per unit of time by

8T = ^^-^^0 . (168)
-* ~ -'o

Conversely, if the rate and the correction at the instant

Tq are known, the correction at the instant T is given by

AT=ATo + 8T(T-To). (169)

Example. The correction to chronometer T. S. & J. D.

Negus, no. 721, was + IG"* 19*.5 at Ann Arbor mean time

1891 March 25"' 11\ and + 16"» 55^6 at 1891 April ¥ \\\

Find the daily rate, and the correction at 1891 March
28^^ 13^

From (168) we find the daily rate hT= + 3*.61. Sub-

stituting this and T= March 28'' 13* in (169) we find

AT= + 16" 19'.5 + 3'.61 X 3.08 = + 16™ 30*.6.

The above equations are true only when the rate is con-

stant for the interval T — T^. Such constancy can be

assumed for an interval of a few days in the case of the

best chronometers ; but when great accuracy is required

the interval between observations for determining chro-

nometer correction should be as small as possible.

When several chronometers are employed, the correction

to one is obtained by observation ; and to the others, by

comparison with the first. If two chronometers which

keep the same kind of time are compared, it will generally

happen that they do not beat together. The fmction of a

second by which one beats later than the other can be esti-

mated after some practice to within 0*.l or 0*.2, so that the

correction can be obtained to that degree of accuracy by

this method.

When a sidereal chronometer is compared with a mean
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time chronometer the degree of accuracy is higher. If the

chronometers tick half seconds, the beats of the two will

coincide once in every 183% since in this interval sidereal

time gains 0*.5 on mean solar. The ear is capable of esti-

mating the coincidence of the beats within 0^02 or 0*".03.

When the coincidence occurs the observer notes the times

indicated by the two chronometers. The correction to the

one being known, a satisfactory value of the correction to

the other is readily obtained.

When a chronograph [§ 68] is at hand and the chronom-

eters are provided with break-circuits (or make-circuits),

the comparisons are most conveniently and accurately

made by placing the two chronometers in the chronograph

circuit. The beats are recorded on the chronograph sheet

and the distance between them can be measured very

accurately by means of a scale.

It is convenient to use a sidereal chronometer when

making observations on the stars, planets, comets, etc., and

a mean time chronometer when making observations on

the sun.

65. The observer should be able to " carry the beat " of

the chronometer ; that is, mentally to count the successive

seconds from the tick of the chronometer without look-

ing at it. An experienced observer will carry the beat

for several minutes, estimate the times of transits of a

star over several wires (or other similar phenomena) to

tenths of seconds, and write them on a slip of paper with-

out taking his eye from the telescope : then, still carrying

the beat, he will look at the chronometer face to verify his

count. This is called the " eye and ear method " of observ-

ing, and it is very important that every observer should be

able to employ it with accuracy and perfect ease.

66. To obtain the best results from a chronometer the

following precepts should be rigidly observed

:

(a) It should be wound at regular intervals. If it re-
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quires winding daily it should always be wound at the

same hour of the day; otherwise an unused part of the

spring is brought into action and a change of rate results.

(5) The hands should not be moved forward oftener

than is necessary, and they should not be moved backward.

(c) A chronometer on shipboard should be allowed to

swing freely in its gimbals, so that it may always take a

horizontal position; but when carried about on land it

should be clamped so as to avoid the violent, oscillations

due to the sudden motions it receives.

{d} It should be kept in a dry place; as nearly at a

uniform temperature as possible ; away from magnetic in-

fluences ; and when at rest should always be in the same

position with respect to the points of the compass.

(e) All quick motions should be avoided: in particular,

it should never be rotated rapidly about its vertical axis.

(/) In out-of-door use it should be protected from the

direct rays of the sun.

67. The astronomical clock is a finely constructed clock

whose pendulum is compensated for changes of tempera-

ture. Its rate is in general more uniform than that of a

chronometer. It is one of the fixed instruments of an

observatory, and to that extent the remarks concerning

the chronometer are applicable to it.

THE CHRONOGRAPH

68. The chronograph is a mechanical device for recording

the instant when an observation is made. A sheet of paper

on which the record is to be made is wrapped around a

metallic cylinder which is caused to rotate once per minute

by means of clock-work. A pen is attached to the armature

of an electro-magnet in such a way as to press its point on

the moving paper. The magnet is carried slowly along the

cylinder by a screw, so that the pen traces a continuous

spiral on the paper. The electro-magnet is placed in an
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electric circuit which passes through the chronometer or

clock (or, better, through a relay connected with the time-

piece), in such a way that the circuit is broken for an

instant at the beginning of every second, or every other

second. At each of these instants the electro-magnet

releases the armature carrying the pen, the pen moves
laterally for the moment, and in this way the spiral is

graduated by notches to seconds of time. One notch is

usually omitted at the beginning of each minute, to assist

in identifying the seconds. One of the circuit wires passes

through a signal-key held in the observer's hand. When a

star, for example, is being observed he presses the key at

the exact instant when the . star is crossing a wire, thus

breaking the circuit and making the record on the chrono-

graph sheet. The beats of the chronometer being recorded

on the sheet, the chronometer time when the key was

pressed can be read from the sheet by means of a scale

with great accuracy, and at the observer's leisure.

When the chronograph is first set in motion the observer

records in his note-book the hour, minute, and second cor-

responding to a certain marked notch on the sheet, which

serves as a reference point in identifying all the notches

on the sheet.

In some forms of the chronograph the circuit is made by

pressing the key, but the break-circuit is preferable.

The chronographic method is generally preferable to the

eye and ear method because it relieves the mind from

carrying the beat and making the record, thus allowing

greater care to be given to other parts of the observation,

and because more observations can be made in a given time.

But in the case of transit observations of slowly-moving

stars, or of very faint objects, and in many forms of microm-

eter observations, the eye and ear method is at least as

satisfactory as the chronographic method.

A very common form of chronograph is illustrated in

Fig. 15.



CHAPTER VI

THE SEXTANT

69. The sextant is an instrument especially adapted to

the determination of time, latitude and longitude when

extreme accuracy is not required, as in navigation and

exploration. It con-

sists essentially of a P
brass frame ADO,
Fig. 16, bearing a

graduated arc AC, a

telescope UF, whose

line of sight is paral-

lel to the plane of

the graduated arc,

and the mirrors H
and D, whose planes

are perpendicular to

the plane of the arc.

The mirror D, called

the index-glass, is

fixed to the index-

arm DB, which revolves about D at the center of the arc,

and which carries a vernier at B. The mirror ff, called

the horizon-glass, is attached to the frame. The lower

half of it is silvered, the upper half is left clear.

Figure 17 illustrates a form of sextant commonly em-

ployed. The special parts already described in connec-

tion with Fig. 16 will be recognized without difficulty.

The telescope is mounted on an adjustable standard so

89

Fig. 16
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that its distance from the frame of the sextant may be varied

by turning the screw-head at the lower end of the standard.

Colored or neutral-tint glasses are mounted in front of

the index and horizon glasses. They can be rotated into the

paths of the sun's rays to protect the eyes while observing

that body. A dense neutral-tint glass may also be screwed

Fig. 17

over the eyepiece for the same purpose. The telescope

may be replaced by others of different magnifying power,

or by one with a larger object-glass for observing stars,—
shown in the foreground of the cut. The index-arm car-

rying the vernier is furnished with a clamp and slow

motion for setting accurately to any desired reading.

70. To illustrate the method of using a sextant and the

principles involved, let it be required to measure the angle

SUS' between the stars *S' and S'. The instrument is held

in the hand and the telescope directed te the star S. The
ray SU passes through the unsilvered part of ^ and forms
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a direct image of the star at the focus F. The sextant is

revolved about the line of sight until its plane passes

through the other star *S". The index-arm is then moved

until the reflected image of S' is brought into the field and

nearly in coincidence with the direct image of S. The

index-arm is clamped and the two images brought into

perfect coincidence by turning the slow-motion or tangent

screw. If the instrument is perfectly constructed and

adjusted, the required angle is given at once by the circle

reading. The ray of light S'D, which forms the reflected

image at F, traverses the path S'B-DH-HF, being re-

flected by the two mirrors D and H. When the direct

and reflected images coincide, the angle between the

stars is twice the angle between the mirrors. That is,

SEti' = 2HLD, since the angle

SES' = 180° - EDH - EHD
= 180° - 2 HDL - 2 (LHD - 90°)

= 2 (180° - HDL - LHD)
= 2 HLD.

If A is the position of the zero of the vernier when the

two mirrors are parallel, and B its position when the two

images coincide, we have

SES' = 2HLD = 2ADB = 2AB. (170)

It thus appears that to enable us to read the required angle

directly from the circle, the circle reading must be twice

the corresponding arc. Thus, the 120° line is really only

60° from the 0° line [or a sextant, hence the name].

An improved form of the sextant is known as the Pistor

and Martins (Berlin) prismatic sextant, in which the hori-

zon glass is replaced by a totally reflecting prism, occupying

a somewhat different position on the frame of the instru-

ment. Among other advantages of the prismatic form it

can be used for measuring angles up to 180° and even
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greater ; whereas with the. common form, the angle is lim-

ited to about 140°.

Again, the graduated arc is sometimes a complete circle,

in which case the index arm is extended over a diameter

of the circle and carries a vernier on each extremity. Such
an instrument is called a reflecting circle or prismatic circle

according as a horizon-glass or prism is used. Its chief

advantage lies in the fact that the eccentricity is eliminated

by the use of two verniers 180° apart.

71. In order to obtain good results with the sextant,

the instrument must be accurately adjusted, and the tele-

scope focused; the direct and reflected images should be

about equally bright; and several complete observations

should be made, the mean of all being used.

The images are made equally bright by moving the tele-

scope from or toward the frame, so as to utilize more or

less of the light passing through the transparent part of

the horizon-glass, or by placing colored-glass shades in

front of the index-glass.

In measuring the angular distance between two stars,

the images of the stars are brought into exact coincidence

in the middle of the field of view. In measuring the dis-

tance of the moon from a star, the star is brought into

coincidence with that point of the moon's bright limb

which lies in the great circle joining the star and the

center of the moon. The measured distance is then in-

creased or decreased by the moon's semidiameter [§§ 33,

34, 35]. In the case of the sun and moon the images of

the nearest limbs are made to coincide, and the measured

distance is increased by the semidiameters of both objects,

as before. Results obtained in this way, when corrected

for any instrumental errors, are the apparent distances be-

tween the objects.

The sextant is also used for measuring the apparent alti-

tudes of the heavenly bodies. At sea the telescope is
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directed to that point of the horizon which is below the

object. The reflected image is brought into contact with

the horizon line. When the instrument is vibrated slightly

about the line of sight the image should describe a curve

tangent to the horizon. The sextant reading corrected for

instrumental errors and the dip of the horizon [§ 32] is the

apparent altitude. If the object is the sun, the lower or

upper limb is made tangent to the horizon ; if the moon,

the bright limb ; and the sextant readings must be further

corrected for semidiameter.

For observing altitudes on land an artificial horizon is

used. This is a shallow basin of mercury over which is

placed a roof, made of two plates of glass set at right

angles to each other in a frame, to protect the mercury

from agitation by air currents. The mercury forms a very

perfect horizontal mirror which reflects the rays of light

from the star. If the observer places his eye at some point

in a reflected ray, he will see an image of the star in the

mercury, whose angle of depression below the horizon is

equal to the altitude of the star above the horizon. If

then he directs the telescope to the image in the mercurj'-,

and brings the two images into coincidence as before, the

sextant reading corrected for instrumental errors is double

the apparent altitude of the star. The sun's altitude is

measured by making the two images tangent externally

The corrected sextant reading is double the altitude of

the lower or upper limb, according as the nearest or far-

thest limbs of the sun and its image in the mercury are

observed.

The double altitudes of stars near the meridian are

changing slowly, and the images are brought into contact

by means of the slow-motion screw as before. But the

double altitudes of stars at a distance from the meridian

are changing rapidly, and another method is used. To
illustrate, suppose the sun is observed for time when it is

east of the meridian, and the altitude therefore increasing.
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The upper limb is observed first. The two images are

brought into the field and the index moved forward until

the sextant reading is from 10' to 20' greater than the

double altitude of the upper limb, and the instrument is

clamped. The images are now slightly separated, but they

are approaching. When they become tangent, the ob-

server notes the time on the chronometer and reads the

circle. The index is again moved forward from 10' to 20'

and the contact observed as beforcc In this way, four or

five observations are made. The double diameter of the

sun is about 64', and for observing the lower limb the

index is quickly moved backward about 45'. The two

images now overlap, but they are separating, and the time

is noted when they become tangent. Moving the index

forward as before, four or five observations are made on

the lower limb.

If the sun is observed west of the meridian, the altitudes

of the lower limb should be measured first.

72. The faces of the glass in the horizon roof should be

perfectly parallel. If they are prismatic the observed alti-

tudes are erroneous. The error is eliminated by observing

one-half of a set of altitudes with the roof in one position

and the other half with the roof in the reversed position,

and taking the mean of all. Likewise, the glass screens

in front of the index and horizon glasses must have

parallel faces.

The surface of the mercury can be freed from impurities

by adding a little tin-foil. The amalgam which forms can

be drawn to one side of the basin by means of a card, leav-

ing a perfectly bright surface.

ADJUSTMENTS OF THE SEXTANT

73. (a) The index-glass. Place the sextant on a table,

unscrew the telescope and set it in a vertical position on

the graduated arc. Place the eye near the index-glass
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and move the index-arm toward the telescope until the

telescope and its image in the mirror are seen very nearly

in coincidence. Their corresponding outlines will be par-

allel if the index-glass is perpendicular to the plane of the

arc. If they are not parallel, the glass is removed and one

of the points against which it rests is filed down the proper

amount. The axis of the telescope is here assumed to be

perpendicular to the plane of the end on which it rests.

This can be tested by rotating the telescope about its axis

and noticing whether the angle between the tube and its

image varies. The telescope should be set at the mean of

the two positions which give the maximum and minimum
values of this angle.*

(5) The horizon-glass. The index-glass having been

adjusted, the telescope is directed to a star and the index-

arm is brought near the zero of the arc. If the horizon-

glass is parallel to the index-glass the reflected image will

pass through the direct image when the index-arm is moved
slowly to and fro. If it passes on either side of the direct

image the horizon-glass needs adjustment. This is done

by turning the screws provided for the purpose.

(c) The telescope. Two parallel wires are placed in the

telescope tube. These are made parallel to the plane of

the sextant by revolving the tube containing them. The

line of sight is the line joining a point midway between

these wires and the center of the object glass. This should

be parallel to the plane of the sextant. To test the adjust-

ment, select two well-defined objects about 120° apart,

and bring the two images into coincidence on one of the

side wires, and then move the sextant so as to bring the

images on the other wire. If the images still coincide,

the line of sight needs no adjustment. If the images are

separated, the collar which holds the telescope is shifted

by means of screws until the adjustment is satisfactory.

* This method was proposed by Professor J. M. Schaeberle : The

Sidereal Messenger, May, 1888.
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CORRECTIONS TO SEXTANT READINGS

74. The index correction. It is seen from (170) that

all angles measured with the sextant are reckoned from

A, the point where the zero of the vernier falls when the

two mirrors are parallel ; whereas the circle readings are

measured from 0°. The index correction is the reading 0°

(or 360°) minus the reading at A. Let it be represented

by I. The value of I can be reduced to zero by rotating

slightly the horizon-glass by means of screws provided

for that purpose. But this adjustment is very liable to

derangement, and it is customary to determine / every

time the sextant is used and apply it to all the sextant

readings.

(a) To determine / for correcting stellar observations,

point the telescope to a star and bring the direct and

reflected images into coincidence. Let the sextant reading

be M. The index correction is given by

/ = 0^ - i2. (171)

Example. Determine / from the following readings

:

359° 56' 0" 359° 55' 50"

56 10 56 10

55 50 55 55

The mean of the six readings is 359° 56' 59".2, and

/ = 360° - 359° 55' 59".2 = + 4' 0".8.

(6) For reducing solar observations, point the telescope

to the sun and bring the direct and reflected images exter-

nally tangent to each other and read the circle. Then
move the reflected image over the direct image until they

are again externally tangent, and read the circle. Let the

readings in the two positions be M^ and jRg' ^i l>6ing the

greater. The reading when the two images coincide is

^(i^i + i^g)' ^^^ the index correction i^ given by

/ = 360° - i (iii + Ri)- (172)



CORRECTIONS TO SEXTANT READINGS 97

The observed semidiameter of the sun is given by

S = i(^i-^2)- (173)

To eliminate the effect of refraction the horizontal semi-

diameter should be measured.

Example. Find / and S from the following readings on

the sun made Thursday, 1891 April 23.

360° 28' 35" 359° 24' 50"

40 40

45 45

45 45

40 50

360 28 41 .0 359 24 46 .0

/ = 360° - 359° 56' 43".5 = + 3' 16".5.

S = i(l° 3' 55".0) = 15' 58".7.

From the American Ephemeris, p. 56, aS' = 15' 56".3.

75. Correction for eccentricity. The arc of a sextant

being short, the eccentricity cannot be eliminated by

means of two verniers 180° apart, and it must be investi-

gated. This can be done by comparing several angles

measured with the sextant with their known values ob-

tained in some other way. Thus in Fig. 11 the sextant

reading is twice the arc AM. The true value of the angle

is obtained by correcting the reading atM for eccentricity,

and correcting the position of A for eccentricity and index

error. The true reading at M is given by (157). The
true reading at the zero point A is given by

R(, = — I + e" sin tj.

The true value of the angle is

R- Ro= M + e" sin (v + rj) - e" sin r} + L (174)

But R— Rf^is the known value of the angle ; let d repre-

sent it. iltf is the observed value of the angle ; let d' rep-
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resent it. Now, since an arc on the sextant is one-half the

corresponding reading, we have

I (d - d') — e" sin (v + rj) — e" sin 77 + J 7,

which reduces to

d - d' = ie" cos (^ V + 77) sin I V + / (175)

= 4 e" cos 7] sin ^ v cos J v — 4 e" sin rf sin* J v + /.

If we put
4 e" cos rj = X, 4 c" sin rj = y, (176)

we have
sin^ vcos^va: — sin^^vy + I = d — d'. (177)

This equation involves three unknown quantities, x, y, /.

Three measured angles, each furnishing an equation of the

form (177), are required for the solution of the problem.

There are several ways in which to obtain the value of

d — d' a,t any point of the arc.

(a) For those who have access to a meridian circle, the

most direct process known is the ingenious method proposed

by Professor Schaeberle in der Astronomische Nachrichteriy

no. 2832.

(6) When the latitude of the observer and the time are

accurately known, make a series of measures of the double

altitudes of a star just before and after its meridian pas-

sage. The observed double altitude at the instant of tran-

sit is obtained from these measures by the method of § 87.

The apparent double altitude at the instant is obtained at

once from the known declination, latitude and refraction.

The latter minus the former i^ d — d'

.

(c) When the latitude and time are not accurately

known, measure the distance between two stars and com-

pare it with the known apparent distance. The apparent

distance is found by the method of § 10, using a', h' and

a", h" as affected by refraction, § 31.

Example. The distance between Aldeharan and Arcturus

was measured with the sextant at Ann Arbor, Thursday

night, 1891 March 5, as below. It is required to form the
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equation (177) for this pair of stars,

correction A^ was + 15™ 7*.

The chronometer

Chronometer Sextant Barom. 29 .400 inches

Means

8»37"

45

48

52

56

9

9 4

8 52

+ 15

9 7

25"

30

30

20

20

30

5

7

12

130° 14'

14

14

14

14

130

55"

40

55

35

55

14 45

14 40

14 46.4

Att. Therm.

Ext. Therm.

65°.0 F.

18°.0 F.

Amer. Ephem., pp. 322, 340

A Idebaran A returns

4* 29"' 39" .33 14» 10"* 41» .97

16° 17' 22" .7 19° 44' 47" .8

With these data we solve (41), (35), (36), (37), (32),

(95), (100) and (101) as below.

A Idebaran Arcturus sin t 9.97127 9.98667„

6 9* 7'»12' 9* 7" 12* COS(f> 9.86915 9.86915

a 4 29 39 14 10 42 cosec z 0.04642 0.03729

t 4 37 33 18 56 30 cosec q 0.11316 0.10689„

<69°23' 15" 284° 7' 30" logl 0.00000 0.00000

<^42 16 47 42 16 47

coti 0.04130 0.04130 True 2 63° 58' 41" 66° 35' 42"

cos< 9.54660 9.38746 Mean refr. 1 56 2 11

Z21° 9' 54" 15° 1'24" App.2 63 56 45 66° .33 31

816 17 23 19 44 48 log/x 1.75821 1.75766

tan< 0.42467 0.59921„ tan 2 0.31078 0.36292

sin L 9.55758 9.41.366 ^log^r 9.99583 9.99583

sec(S+L) 0.10027 0.08542 A. logy 0.02746 . 0.02750

tan 5 0.08252 0.09829„ logr 2.09228 2.14391

9 50° 24' 39" 308° 34' 16" sin q 9.88684 9.89311„

cot(8+L) 0.11.573 0.15849 sec 8 0.01780 0.02632

cos J 9.80433 9.79482 log(Za 1.99692 2.06334,,

2 63° 58' 41" 66° 35' 42" cos 9 9.80433 9.79482

d8 + 1' 18".8 + 1' 26".8

da + 1 39 .3 - 1 55 .7

Applying these refractions to the above star places we
obtain the coordinates which are to be used in solving

(53), (54), (55) and (50).
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67'

16

212

' 26' 29'

18 41

38 33

a" - a'

cot 8'

cos (a" — a')

G
sin G

tan (a" — a!)

sec (8" + G)
tan B'

B'

19 46 14 .6

145 12 4 .6

0.533668

9.914429„

289° 36' 52".7

9.974038„

9.841975„

0.197546

0.013559

45° 53' 39".3

cot (8" + G) 9.914333„

cosB' 9.842600

d 130° 17' 22".4

sin (a" —a') 9.756404

cos 8' 9.982158

cosec B' 0.143841

cosec d 0.117597

log! 0.000000

d' 130° 14' 46".4

d-d' + 2 36 .0

d-d' + 156 .0

The angle v in (177) is not ^ d\ but one-half the read-

ing corresponding to the line of the circle with which the

vernier line coincides, and it is the eccentricity of this point

which enters into d— d'. For the reading d' = 130° 14' 50"

the 29th line of the vernier coincides with the circle line

135° 0', and therefore in this case \v= 33° 46'. We now
find

sin ^ V cos ^v = 0.462, sin^Jv = 0.309;

and therefore
0.462 X - 0.309 y + 1= 156.0.

Similarly, from the meridian double altitude of a star,

method (5), and from another pair of stars we find

0.259 X - 0.072 ?/ + / = 165.0,

0.117X- 0.014?/ + /= 171.0.

Solving these three equations we obtain

log x = 1 .61380„, log y = 0.43265, / = 175.8 ; >

whence, from (176),

,7 = 176° 14', 4e" = 41".2.

While the index correction, varies from day to day, and

its value should be determined by the methods of § 74

every time the sextant is used, the eccentricity is prac-

tically constant. By neglecting the term I in (176) and
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making 2 v successively 0°, 10°, etc., we obtain the follow-

ing corrections for eccentricity to be applied to the circle

readings.

Circle Correction Circle Correction Circle Correction

0° 0".0 50° - 8".8 100° - 16" .2

10 -1 .8 60 -10 5 110 -17 .4

20 -3 .6 70 -12 .0 120 -18 .5

30 -5 .4 80 -13 .5 130 -19 .4

40 -7 .2 90 -14 .9 140 -20 .2

In order to determine the eccentricity very accurately,

at least ten known angles distributed uniformly from 0°

to 140° should be measured and the resulting equations

solved by the method of least squares. The observations

sliould be made in one night, so that / may be considered

constant; but the observer should determine I several

times during the night, to make sure that it does not

change.

DETERMINATION OF TIME

76. Time is determined from observations on the heav-

enly bodies by determining the corrections to the chro-

nometer or other time-piece at the instants when the

observations are made.

77. By equal altitudes of a fixed star. When a star is

from two to four hours east of the meridian and near the

prime vertical, observe a series of its double altitudes

[§ 71] with the sextant and sidereal chronometer, and let

the mean of the chronometer times be 6'
. When the star

reaches the same altitude west of the meridian observe its

double altitudes with the vernier of the sextant set at the

same readings as before, in inverted order, and let the

mean of the chronometer times be 6". The chronometer

time of the star's meridian passage is ^(^' + ^")* The
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sidereal time of the star's meridian passage.equals its right

ascension a. The chronometer correction A^ at this in-

stant is given by
AS = a - UO' + 0"). (178)

If a mean time chronometer is employed the sidereal

time a must be converted into mean time. The required

chronometer correction is then given by (178) as before.

Example. The following equal altitudes of Arcturus

were observed with a sextant and sidereal chronometer at

Ann Arbor, Saturday night, 1891 April 25. Required the

chronometer correction.

Chronometer Sextant Chronometer
Star East reading Star West
10* 23™ 21* 81° 30' 0" 17'',

21m 47*

24 14 81 50 20 52

25 9 82 10 19 56

26 4 82 30 19 2

27 82 50 18 7

& 10 25 9.6 ^"17 19 56.8

Amer. Ephem., p. 840, a 14* 10" 42».8

^(d' + B") 13 52 33.2

A^ + 18 9 .6

78. By equal altitudes of the sun. Observe as described

above [§§ 71, 77] the two series of equal double altitudes

of the sun before and after noon, and let the chronometer

times of the east and west observations be T' and T'\ a

mean time-piece being used. The mean of the two times

is not the chronometer time of the sun's meridian passage,

since the sun's declination has changed during the interval,

and a correction must be applied. To find its value let

t = half the interval between the observations = ^(T" — T),

S = the sun's declination at the observer's apparent noon,

dh = the increment of the sun's declination in the interval t,

dt = the increment of the sun's hour angle due to the increment of

the declination.
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Differentiating (15), regarding 8 and t as variables, and

dividing by 15 to express dt in seconds of time, we have

\ sin < tan < / 15

by which amount the east and west observed times are

greater than they would be if the declination were con-

stant and equal to h. The chronometer time of the sun's

meridian passage is therefore |^ (2" -f- T") — dt. The mean
time of the sun's meridian passage is E^ the equation of

time at the observer's apparent noon ; and therefore the

chronometer correction at the mean of the two times is

^.T = E - ^{T + T") + dt. (180)

If a sidereal chronometer is employed the sidereal inter-

val t is converted into the equivalent mean interval [§ 16],

dt is computed from (179) as before and subtracted from

the mean of the two times, and the result is the chronome-

ter time of the sun's meridian passage. The sidereal time

at this instant is equal to the sun's apparent right ascen-

sion a, and the chronometer correction is given by

Ad = a - K^ + ^') + dt. (181)

Example. The equal double altitudes of the sun were

observed as below at Ann Arbor, Saturday, 1891 April 24-

25, a sidereal chronometer being used. Find the chro-

nometer correction.

Chronometer Sextant Chronometer Sun's

Sun East reading Sun West limb
22* 5™ 4. 66° 46' 0" 5*42" 21» Upper

5 48 67 2 41 37 ((

6 33 67 18 40 53 «

7 17 67 34 40 9 ((

8 1 67 50 39 25 u

9 8.5 67 10 38 17 Lower
9 53 67 26 37 32 «

10 38 67 42 36 47.5 «

11 23 67 58 36 3 ((

22 12 7.5 68 14 5 35 18.5 «

^ 22 8 35.3 $" 5 38 50.3
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^(6" -0')=t 3ft 45m 7..5 tan ^ 9.9587

Reduction -36.9 sinf 9.9192

Mean interval t 3 44 30.6 (1) 1.095

t 3».742 tan 8 9.3725

t 56° 8' tan t 0.1732

<!> 42 17 (2) 0.158

Amer. Ephem., 8 + 13 16 log[(l)-(2)] 9.9717

48".7 X 3.742 = d8 -f 182".2 logrfS 2.2605

Sun's apparent a 2* ll" 39».3 log,^ 8.8239

H^' +n 1 53 42.8 log dt 1.0561

dt + 11.4

^e + 18 7 .9

79. It may be convenient to observe the equal altitudes

in the afternoon of one day and the forenoon of the next

day. In this case the mean of the two observed times

minus the proper value of dt is the chronometer time of

the sun's lower culmination. If t is half the mean time

interval between the observations it must be replaced by

180 + « = i' when substituting in (179) ; and E in (180)

and a in (181) must be increased by 12'*. The chronom-

eter correction at midnight is then given by (180) and

<181).

Example. Find the (sidereal) chronometer correction

from the following equal altitude observations of the sun.

6' 5* SS" 56».3 Friday afternoon, 1891 April 24

6" 22 8 35 .3 Saturday forenoon, 1891 April 24

I ($" -e')=t 8» 17"* 19».5 tan<^ 9.9587

Reduction -1 21.5 8\nt! 9.9187„

Mean interval t 8 15 58.0 (1) - 1.096

t 8».266 tan 8 9.3668

t 123° 59' tani' 0.1713,

t' 303 59 (2) - 0.157

<f>
42 17 log[(l) -(2)] 9.9727„

S + 13 ,6 logrfS 2.6075

+ 49".0 X 8.266 = d8 + 405".0 logT^ 8.8239

12» + a 14ft 9m46«.4 log dt 1.4041„

\{6' + 6") 13 51 15.8

dt -25.4

Ad + 18 5 .2
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dt is a solar interval, and should be reduced to sidereal,

but the correction is small, and for sextant work may be

neglected.

80. The method of determining time by equal altitudes

possesses the advantages that no corrections are applied

for index error, eccentricity, refraction, parallax and semi-

diameter; any undetermined errors are eliminated from

the result ; and the latitude need not be accurately known.

However, if the state of the atmosphere and the index

correction are different at the two times of observation,

the equal sextant readings do not correspond to equal

true altitudes, and a correction must be applied. If the

index correction is greater and the refraction less for the

west observation than for the east, the true double altitude

at the west observation is too great by the difference of

the index corrections and twice the difference of the re-

fractions, and the time of the observation must be increased

by the interval required for the sextant reading to decrease

that amount. This interval can be determined from the

observations themselves. Thus in the example of § 78,

the index correction and refraction for the east observation

were
/' = + 3' 8", r' = V 24"

;

and for the west
/" = + 3' 21", r" = V 22".

The true double altitude at the west observation was too

great by
(/" - /') + 2 (r' - r' ) = + 17".

From the observations it is seen that the sextant reading

decreased 16' = 960" in about 44^ If x is the correction

to the time of the west observation, we have

960 : 17 = 44 : X,

from which x=0'.S. The correction to A^ is — |^a:= — 0*.4,

and therefore the true value of the chronometer correction

is A^ = -I- 18™ 7*.5.
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81. By a single altitude of a star. A series of double

altitudes of a star having been observed in quick succes-

sion, let

R = the mean of the sextant readings,

6' = the mean of the corresponding chronometer times

;

and let

/ = the index correction,

e = the correction for eccentricity,

h' — the apparent altitude of the star,

z' = the apparent zenith distance of the star,

r = the refraction,

2 = the true zenith distance of the star.

Then

and
2A' = i2 + / + c = 2(90° - z'), (182)

2 = 2' + r. (183)

The latitude <^ and the declination h being known, the

hour angle t is given by (38) or (39). The sidereal time

at the instant of observation is given by = a + t^ and

thence the chronometer correction by

Ae = 6- 6'. (184)

\ In case a mean time chronometer is used, the sidereal

time 6 must be converted into the mean time T and com-

pared with the chronometer time T'.

In determining the time from single altitudes of the stars

and the sun, the observations should not be confined to one

side of the meridian. It would be well to observe alter-

nately east and west of the meridian, at about equal alti-

tudes. A comparison of the results of such a series often

leads to the detection of systematic errors whose presence

would not be suspected from observations made wholly in

one part of the sky.

Example. The observations made on Arcturus east of

the meridian, recorded in § 77, give

^' = 10» 25™ 9».6, R = 82° 10' 0".
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Find the chronometer correction.

R 82° 10' 0" Barom. 29.100 inches

I + 3 12 Att. Therm. 55° .0 F.

e - 14 Ext. Therm. 50 .0 F.

2h' 82 12 58

h' 41 6 29 8ini[2+(<^-8)] 9.76646

z' 48 53 31 siiiK^-(<^-8)] 9.35770

From (94), r 1 4 sec ^Iz + (<!> + 8)-] 0.24652

z 48 54 35 sec K^ -(</> + 8)] 0.00285

<t>
42 16 47 tan^^t 9.37353

Ephem., 8 + 19 44 52 tan ^t 9.68676„

<^-8 22 31 55 it 154° 4' 26"

<l> + 8 62 1 39 t 308 8 52

z + {<f>-B) 71 28 30 t 20* 32"' 35* .5

z-(<f>-8) 26 20 40 Ephemeris, a 14 10 42 .7

z + (4> + 8) 110 56 14 6 10 43 18 .2

Z-(<f> + S) -13 7 4 d> 10 25 9 .6

AO + 18 8 .6

82. Bi/ a iiingle altitude of the sun. If

p = the parallax of the sun,

S = the semidianieter of the sun,

the true zenith distance of the center of the sun is given by

z-z' + r-p±S; (185)

S being -}- or — according as the upper or lower limb of

the sun was observed. The value of t is given by (38) or

(39) as before, t is the true time when the observation

was made. The mean time T is given by applying the

equation of time ^. If T' is the chronometer time of

observation, the chronometer correction is

AT=T-T'. (186)

If a sidereal time-piece is used the mean time T must be

converted into the sidereal time and the resulting value

compared with the chronometer time.

Since the declination of the sun is changing, it is neces-

sary to know the chronometer correction withii^lO*; other-

wise the value of 8 taken from the Ephemeris may b6
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slightly in error, thus giving only an approximate value

of the chronometer correction. With this value of the

chronometer correction a more accurate value of 8 could be

found, which substituted in (38) as before would give prac-

tically exact values of t and the chronometer correction.

Example, The observations made on the sun east of the

meridian, recorded in § 78, give

& = 22* S™ 3o».3, R = 67° 30' 0".

The chronometer correction is assumed to be + 18"* 3*

;

required its value furnished by the observations.

R
I

e

2h'

h'

z'

r

P
z

0"

8

<}>-8

<i> + 8

z + (<!>- 8)

z-(cf>-8)
2 + (<^ + 8)

z-(<f> + 8)

sin^lz + (<f,-8)2
sini[2-(<^-8)]
sec ^lz + (<f>+ 8)]

seci[2-(<^ + 8)]

taii2

1

1

tan ^t

it

t

True time

67° 30'

+ 3 8

- 12

67 32 56

33 46 28

56 13 32

1 24

7

56 14 49

42 16 47

+ 13 12 53

29 3 54

55 29 40

85 18 43

27 10 55

111 44 29

45 9

9.83097

9.37104

0.25099

0.00001

9.45301

9.72650„

151° 57' 17"

303 54 34

20»15'»38'.3

Barom. 29.036 inches

Att. Therm. 50°.0 F.

Ext. Therm. 47 .8 F.

Amer. Ephem., p. 278, ir 8".8

log IT 0.944

sin z' 9.920

From (64), p 7"

e 22» 8~a5»

Approx. Ad + 18 3

Sid. time 22 26 38

Mean time April 24"20 13 29

Longitude 5 34 55

Gr. mean time April 25 1 48 24

Ephem., 8 + 13° 12' 53"

True time April 24'«20»15'»38'.3

Longitude 5 34 55 .1

Gr. true time April 25 1 51

Eq.oftime, E - 2 4.9

Mean time April 24 20 13 33 .4

Sid. time, 6 22 26 42 .4

Chromtime,^ 22 8 35.3

Atf +18 7.1

This value of A^ differs so little from the assumed value

that another approximation to the value of S is unnecessary.
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Using + 3' 21" as the index correction, the value of

A^ given by the afternoon solar observations, § 78, is

+ 18"* 8M, which agrees well with the above, assuming the

chronometer's daily rate to be + 3*.6 [§ 64].

83. The error in the hour angle— and therefore in the

time— produced by a small error in the measured altitude

or in the assumed latitude is readily found. Differentiat-

ing (15), regarding z and t as variables, and reducing by

(17), we obtain

dt= . ^^ : (187)
sin A cos <p

that is, an error dz in the measured zenith distance pro-

duces an error dt in the time, which is least when sin A is

a maximum. Likewise, differentiating (15) with respect

to
<f>
and t and reducing by (16) and (17), we have

dt = 'I^
; ; (188)

tan A cos
<f>

that is, an error d<f> in the latitude gives rise to an error

dt in the time, which is small when tan A is large.

For these reasons it appears that to obtain the best

determination of time from observed altitudes, those stars

should be selected which are as nearly'as possible in the

prime vertical.

GEOGRAPHICAL LATITUDE

84. Bi/ a meridian altitude of a star or the sun. Observe

the double altitude of the star or sun at the instant when
it is on the meridian, and obtain the true zenith distance z

as in §§ 81 and 82. The latitude is then found from

<f>=^8±z, (189)

the upper sign being used for a star south of the zenith,

the lower sign for a star between the zenith and the pole.

For a star below the pole we have

<f>^ 180° - a - z. (190)
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Example. The double altitude of the sun's lower limb

was observed at Ann Arbor at true noon, Friday, 1891

Feb. 6, as follows

:

Sextant 63° 49' 15". Barom. 28.98 inches, Ext. Therm. 38° F.

Find the latitude.

In this case r is computed from (96), and p may be taken

from the table on page 27.

R 63° 49' 15" z' 58° 3' 56"

I + 35 r 1 28

€ 12 P 8

2h' 63 52 8 S - 16 15

h> 31 56 4 z 57 49 1

z< 58 3 56 8 -15 32 11

<i>
42 16 50

85. By an altitude of a star, the time being known. Hav-

ing determined the star's hour angle by (41), the latitude

is given by (15), in which <}> is the only unknown quantity.

To determine it, assume

/sin F= cos 8cos<, (191)

/cos F = sin 8, (192)

and (15) becomes

cos 2 =/sin (cf> + F) = sin SsecFsin (<^ + F).

From these we obtain

tan F = cot 8 cos t, (193)

sin (<^ + F) — cos F cos z cosec 8, (194)

which effect the solution.

The quadrant of F is determined by (191) and (192).

(<^+^), being determined,from its sine, may terminate

in either of two quadrants, thus giving rise to two values

of the latitude. That one is selected which agrees best

with the known approximate value of the latitude.

In case the sun is observed, t is the true solar time.
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Example. Find the latitude from the following double

altitudes of Polaris observed Saturday, 1891 April 25

:

Chronometer Sextant Barom. 29.17 inches

14*55" 5* 82° 18' 40" Ext. Therm. 39°.3 F.

56 35 19 20

58 20 19 35 Amer. Ephem., p. 305

15 1 20 40 a P17'»48»

Means 14 57 45 82 19 34 8 88° 43' 32"

& 14A57«45, R 82° 19' 31" cot 8 8.347270

Ad + 18 10 I + 3 12 cos< 9.939572„

6 15 15 55 £ - 15 F 358° 53' 28"

a 1 17 48 2h' 82 22 31 cos F 9.999919

t 13 58 7 h' 41 11 15 cos 2 9.818414

t 209° 31' 45" z' 48 48 45 cosec 8 0.000108

r 1 6 sin (<I> + F) 9.818441

z 48 49 51
<f> + F 41° 10' 20"

42 16 52

86. Differentiating (15) with regard to z and
(f>

and

reducing by (16) we obtain

dz
d<l> =

cos J.'
(195)

that is, an error dz in the measured zenith distance pro-

duces the minimum error d(f) in the latitude when the star

is on the meridian.

Differentiating (15) with regard to
<f)
and t, and reduc-

ing by (16) and (17), we obtain

d<f} = — tan A cos
<f)

dt
; (196)

that is, an error dt in the estimated time of making the

observation gives rise to an error d^ in the latitude, which

will be small when the star is nearly on the meridian, and

equal to zero when A is 0° or 180°.

For these reasons it appears that to obtain the best de-

termination of the latitude from observed alt^itudes, those

stars should be selected which are as nearly as possible on

the meridian.
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87. By circummeridian altitudes. The method of § 84

is applicable to only one altitude observed when the star

is on the meridian. If a series of altitudes be observed

just before and after meridian passage,— called circum-

meridian altitudes,— they can be reduced to the equivalent

meridian altitudes and a quite accurate value of the lati-

tude obtained by combining the results. Equation (15)

may be written

cos z = cos (</> — 8) — cos
<f>

cos 8 2 sin^ ^ t. (197)

If we let Zq be the zenith distance of the star when it is on

the meridian and put y = cos^ cos B 2sin2i ^, (197) be-

comes
cos z = COS Zq — y. (198)

Here a is a function of y, and we may write

Developing this in series by Maclaurin's formula, restoring

the value of y, and dividing the abstract terms by sin 1" to

express them in seconds of arc, we have

_ COS <^ COS 8 2sm^^t /cos</>cos8\2 cot z^, 2 sin* J < /-loov~ " sin 2q sin 1" \ sin Zq J sin 1" ' v /

which converges rapidly when t does not exceed 30*", and

the star is more than 20° from the zenith, as it will be in

sextant double altitudes. If we let

cos <^ cos 8^^^ ^==cotzo = A (200)
sin Zq

2sm^it _ 2sm*^t
~smlJ^ ~ "*'

sin 1" (201)

and substitute the resulting value of Zq for z in (189), we
have

<f)
= 8±z^: Am±Bn, (202)

the lower sign being employed for a star culminating

between the zenith and the pole.

When a star is observed near the meridian at lower cul-

mination, it is convenient to reckon the hour angle from



GEOGRAPHICAL LATITUDE 113

the lower transit, t in (15) must be replaced by 180° + ^,

and we obtain

cos 2= sin ^ sin 8 — cos ^ cos 8 cos t = — cos (<^ + 8) + cos <j!> cos 8 2 sin^ \ t.

Developing this in series as before and substituting the

resulting value of z^ for z in (190), we have

<i>
= 180° - h - z - Am - Bn. (203)

The entire series of observations is conveniently reduced

as a single observation by letting 2, m and n in (202) and

(203) represent the arithmetical means of the values of

these quantities for the individual observations.

The values of m and n are tabulated in the Appendix,

Table III, with the argument t.

An approximate value of ^ is required in computing A.

This may be obtained by the method of § 84, from the

observation made nearest the meridian.

If the sun is observed, the declination is taken from the

Ephemeris for the instant of each observation in case the

observations are reduced separately, and for the mean of

the times in case they are reduced collectively.

If a star is observed with a sidereal chronometer, the

hour angles t are the intervals between each observed time

and the chronometer time of the star's transit.

If a star is observed with a mean time chronometer, the

intervals must be reduced from mean to sidereal intervals

before entering Table III for m and n.

If the sun is observed with a mean time chronometer, the

intervals should be reduced to apparent solar intervals by

correcting for the change in the equation of time during

the intervals. This, however, will never exceed 0*.5, and

may be neglected in sextant observations.

If the sun is observed with a sidereal chronometer, the

intervals must be reduced to mean solar intervals and

thence to apparent solar.

If the rate of the chronometer is large it must be allowed

for.
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Example. Wednesday, 1891 April 8, at a place in lati-

tude about 42° 17' and longitude b^ 34"^ 55* the following

double altitudes of the sun were observed with a sextant

and sidereal chronometer. Barom. 29.373 inches, Att.

Therm. 66° F., Ext. Therm. 42°.5 F. Required the lati-

tude. [Each printed observation is the mean of three

consecutive original observations.]

Limb Sextant Chronometer Sidereal t Solar t m n

Upper 109° 58' 33".7 0*31"' 28«.0 — 19™ 59«.2 — 19« 55».9 779".6 V'Al
Lower 109 4 40 .0 34 51.0 -16 36.2 -16 33.5 538 .1 .70

" 109 14 6 .2 38 43.3 -12 43.9 — 12 41.8 316 .4 .24

Upper 110 25 16 .2 42 42.3 - 8 44.9 - 8 43.5 149 .5 .05
" 110 29 39 .0 45 44.7 - 5 42.5 - 5 41.6 63 .6 .01

Lower 109 27 27 .5 49 30.7 - 1 56.5 — 1 56.2 7 .4 .00
" 109 27 43 .7 53 9.7 + 1 42.5 + 1 42.2 5 .7 .00

Upper 110 29 .0 57 36.0 + 6 8.8 + 6 7.8 73 .8 .01

" 110 21 51 .2 1 2 56.0 + 11 28.8 + 11 26.9 257 .3 .16

Lower 109 11 33 .7 5 46.7 + 14 19.5 + 14 17.2 400 .6 .39
" 109 2 27 .7 9 12.3 + 17 45.1 + 17 42.2 615 .0 .92

Upper 109 56 20 .0 1 12 33.7 + 21 6.5 + 21 3.0 869 .4 1 .83

109 45 43 .2 + 33.9 339 .7 .48

Apparent time of apparent noon 0* 0™ 0«.0

Equation of time +1 62.1

Mekn time of apparent noon 1 52.1

Sidereal time of apparent noon 1 8 37.2

Chronometer correction + 17 10.0

Chronometer time of apparent noon 51 27.2

The difference between this and the observed times gives

the sidereal intervals t as above.

The mean of the hour angles is + 0"* 33*.9, and there-

fore the sun's declination is taken for the local mean time

0" 1™ 52M + 0"» 33^9 = 0" 2"* 26*, or Greenwich mean time

5" 37™ 21*.

An equal number of observations on the upper and

lower limbs was made, hence there is no correction for

semidiameter.

The solution of (202} is made as follows

:

r



s + 7° 17' 33".4

<t>
42 17

^0 34 59 26 .6

cos<^ 9.86913

COS 8 9.99647

cosec Zq 0.24151

log^ 0.10711

logm 2.53110

Am 434".7

log ^2 0.2142

COtZg 0.1549

logn 9.6812

log^n 0.0503

Bn I'M
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Sextant 109° 45' 43".2

/ +2 51 .7

€ - 18 .0

2h' 109 48 16 .9

h' 54 54 8 .4

z' 35 5 51 .6

?•' 40 .5

p 5 .1

z 35 6 27 .0

S +7 17 33 .4

Am 7 14 .7

Bn 1 .1

<^ 42 16 46 .8

A repetition of the computation with this value of
<f)
does

not change the result.

[The latitude of the place is known to be about

42° 16' 47'M.]

GEOGRAPHICAL LONGITUDE

88. £i/ lunar distances. The moon's distance from a

star nearly in the ecliptic is rapidly changing. Its geo-

centric distances from the sun, Venus, Mars, Jupiter, Saturn

and nine bright stars near its path are given in the Ameri-

can Ephemeris [pp. XIII-XVIII of each month] at three-

hour intervals of Greenwich mean time, from which the

distances at any other instants may be found by interpola-

. tion. Conversely, if its distance from any of these objects

is measured with the sextant and the apparent distance

reduced to the corresponding geocentric distance, the

Greenwich mean time at the instant of observation may
be found. The Greenwich mean time minus the observer's

mean time is the observer's longitude. This method of

determining the longitude is occasionally of considerable

importance to navigators and explores.

89. We shall suppose that the moon's distance from the

sun has been observed. The formulae for a planet will be

the same, save that the semidiameter of the planet may
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usually * be neglected. For a star the parallax and semi-

diameter are zero.

The sextant reading having been corrected for the index

error and eccentricity, the result is the apparent distance

between the nearest limbs of the sun and moon. It

must be corrected for their semidiameters, refractions and

parallaxes.

To compute these corrections, the zenith distances of

the two bodies must be known. When there are three

observers, as frequently happens at sea, the altitudes of the

sun and moon, and the distance between them, should be

measured simultaneously. The observer's mean time can

be obtained also from these observed altitudes of the sun

[§ 82]. When it is not practicable to make these obser-

vations at the same time, the observer may measure the

altitudes immediately before and after measuring the lunar

distance, and obtain the required altitudes at the instant

of observation by interpolation. Again, the observer may
assume an approximate value of the longitude (which he

can usually do sufficiently accurately), and take from the

Ephemeris the right ascensions and declinations of the

sun and moon corresponding to the Greenwich time thus

obtained. The hour angles, azimuths and zenith distances

are then given by §§ 8 and 5.

The parallax of the sun in azi-

muth is negligible ; its parallax

in zenith distance is given by

(64). The parallax of the moon
in azimuth is given by (71) and

(72) ; and in zenith distance, by

(80), (78) and (79). (95) gives

the refractions, care being taken to

use the apparent zenith distance.

Fig. 18 The semidiameters of the sun and

* In case the telescope is powerful enough to define the planet's disk,

the moon's limb _may be made to pass through the center of the disk.
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moon are obtained by the methods of §§ 33-35. The solu-

tion of (107) requires the values of q. In Fig. 18 let M
be the moon's center, S the sun's center, and Z the zenith.

For the sun, q = ZSM^ and for the moon, q = ZMS. If

we let

Z' = the apparent zenith distance of the sun = ZS,

z' = the apparent zenith distance of the moon = ZM,

d' = the apparent distance between the centers = SM,

we can write, for the sun,

and for the moon.

Adding the inclined semidiameters given by (107) to

the corrected sextant reading, the sum is the distance d'

between the centers as seen from the observer.

The combined effect of the refraction and the parallax

in zenith distance is to shift the bodies in their vertical

circles without changing the angle SZM at the zenith,

which we shall represent by V. If we let

Z = the geocentric zenith distance of the sun,

z = the geocentric zenith distance of the moon,

d" = the corresponding distance between the centers,

we can write

cos d" — cos z cos Z + sin 2 sin Z cos V, (206)

cos d' = cos z' cos Z' + sin z' sin Z' cos V. (207)

Therefore

cos d" — cos z cos Z _ cos d' — cos z' cos Z'
.

sin 2 sin Z sin z' sin Z'

or

cos d" - cos (z + Z) _ cosd' - cos (2' + Z')
.gos^

sin z sin Z sin z' sin Z'
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If we put z' + Z' + d' = 2x, and substitute

cos d' — cos (2' -f Z') = 2 sin x sin (x — d'),

cosd" = 1 -2sin2^rf",

cos (2 + Z) = 2 cosH (2 + Z) -1,

- 1 -2siuH(2 + ^),

(208) reduces to

sin2 hd"=smH(z + Z)- ^!"
^ ^!" f

,

sin x sin (a; - d'). (209)^ 2v ^ smz'sinZ' "^ / v /

Let an auxiliary angle Mhe defined by

. o T,^ sin 2 sin Z sin a: sin (x — rf') ,„, ^.

sm 2' sin Z' sni2 \{z-\- Z) ^ '

Then (209) takes the form

sin I d" = sin l(z + Z) cos M. (211)

The parallax of the moon in azimuth produces a small

change in V and therefore in d". From (206), by differ-

entiation,

Arf" = sin 2 sin Z sin V cosec d" A V, (212)

in which Al^is the parallax in azimuth.

The geocentric distance d between the centers is now
given by

d = d" + Arf". (213)

In connection with the lunar distances, the Ephemeris

gives a column " P. L. of Diff." (Proportional Logarithm

of the Difference), which is the logarithm of 10800, the

number of seconds in 3\ minus the logarithm of the change

in the lunar distance, expressed in seconds of arc, in the

next following three hours. That is, it is the logarithm of

the reciprocal of the moon's average rate for the three

hours, or the rate at the middle period of the three hours

[see remarks on interpolation, § 15]. In order to interpolate

for the Greenwich mean time corresponding to the given

value of d, we have only to add the P. L. of Diff. for the

middle period of the approximate interval to the logarithm

of the number of seconds of arc by which d exceeds the
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next smaller Ephemeris lunar distance. The sum is the

logarithm of the number of seconds of time by which

the Ephemeris time is to be increased.

If the P. L. of DifP. given in the Ephemeris is used

without change, a slight correction for the neglected second

difference of the moon's rate can be taken from Table I,

Appendix, American Ephemeris, and applied as there

directed.

If the resulting longitude differs considerably from the

assumed longitude, a second approximation should be made
by starting with the value of the longitude just obtained.

A third approximation will not be necessary.

Example. Tuesday, 1891 May 12, the distance between

the bright limbs of the sun and moon was observed with

a sextant and sidereal chronometer. The mean of ten

observations gave

^ = 8»36'»10', i? =57°28'32".9.

Chronometer correction, +19'" 15'; index correction,

+ 2' 56".4 ; Barom. 29.25 inches, Att. Therm. 62° F.,

Ext. Therm. 57° F. ; latitude, + 42° 16' 47"
; longitude

assumed., + 5'* 34'". Required a more exact value of the

longitude.

d' S^Se^lO* R 57°28'32".9

A^ + 19 15 / + 2 56 A
^ 8 55 25 c - 11 .3

Mean time 5 33 42 Distance 57 31 18 .0

Longitude 5 34

Gr. mean time 11 7 42

Corresponding to this Greenwich mean time, we take

from the American Ephemeris, pp. 74, 75, 77, 80 and 278,

Sun Moon

Right ascension, a 3» 17™ 54* 7» 29"* 31*

Declination, 8 + 18° 15' 10" + 25° 36' 55"

Semidiameter, S 15 51.7 15 12.8

Horizontal parallax, tt 8.8 55 43.3
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By §§ 8 and 5 we find for the geocentric coordinates of

the sun,

t = 84° 22' 45", A = 100° 8' 50", Z = 73° 46' 5"

;

and for the moon,

t = 21° 28' 30", A = 53° 27' 21", z = 24° 15' 40".

Computing the parallaxes we obtain, for the sun,

A' -A = Q, p = Z' - Z = 8".4.

From (58) we find </> - <^' = 687".3 = 11' 27".3; and from

(59) log p = 9.99935 ; therefore, for the moon,

log m = 6.11807, A' -A= + 2r'.8,

y = + 6' 49".2, log n = 8.20908, z' - z = 23' 6".2.

The mean refraction of the sun, Table II, is about

3' 13", and therefore its apparent zenith distance is very

nearly 73° 43' 0". The value of the refraction is now
found from (95) to be 3' 8".6. Similarly, the refrac-

tion for the moon is 25".6. The apparent zenith distances

of the sun and moon are therefore

Z' = 73° 43' 4".8, z' = 24° 38' 20".6.

The apparent zenith distance of the upper limb of the

sun is 73°43'4".8-15'51".7 = 73°27'13".l. The cor-

responding refraction is 3' 5".5. The apparent vertical

semidiameter is therefore contracted 3".l [§ 35], and its

value is 15' 48".6.

The moon's apparent semidiameter is found from (106)

to be 15' 26".3 ; and by refraction its apparent vertical

semidiameter is reduced to 15' 26".0.

The approximate distance between the centers of the

sun and moon is

d' = 57° 31' 18" + 15' 49" + 15' 26" = 58° 2' 33".

Substituting these values of d', Z' and z' in (204) we
obtain for the sun, q = 20° 58' ; and in (205) for the moon,

q = 124° 34'. For the sun, a = 15' 51".7 = 951".7, b =
15' 48". 6 = 948".6 ; and by (107) the inclined semidiameter
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is *S"' = 15' 49".l. Similarly, for the moon, S" = 15' 26". 2.

The apparent distance between the centers of the sun and

moon is therefore

d' = 57° 31' 18".0 + 15' 49".l + 15' 26".2 = 58° 2' 33".3.

The solution of (210) gives Jf= 49° 48' 39".0 ; and

thence, from (211), d" = 58° 18' 16".0. Substituting

A'- A =AV= + 21".8 in (212), we obtain Ad"= + 1"A.

The geocentric distance between the sun and moon is

therefore, by (213),

d = 58° 18' 16".0 + 7" .4 = 58° 18' 23".4.

From the American Ephemeris, pp. 86 and 87, at

Greenwich mean time 9*, d = 57° 16' 23", P. L. of Diff. = 0.3169,

Greenwich mean time 12 , d = 58 43 9
,

P. L. of Diff. = 0.3184.

We have to interpolate for the interval of time T after 9^

corresponding to a change in d of 58° 18' 23".4-57° 16' 23"

= 3720".4. The value of T is approximately 2\ The
value of P. L. of Diff. at the middle of the 2'* is 0.3167.

Gr. mean time IP 8'" 34'

Observer's mean time 5 33 42

Observer's longitude 5 34 52

'. L. of Diff. 0.3167

log 3720».4 3.5706

logT 3.8873

T 7714'

T 2» 8'« 34»

The true value of the longitude is known to be b^ 34'" 55*.

The error of 3* corresponds to an error of 2" in the meas-

ured distance [or in the lunar tables], and is unusually

small. The observations are difficult to make, and the

measures of the best observers are easily liable to an error

of 10". It is well, however, to carry the numerous correc-

tions to tenths of a second to prfevent the accumulated
effect of neglected fractions.

The above solution of this problem is essentially a

rigorous one. Navigators are accustomed to employ
abridged forms of solution, for which the reductions are

much shorter. Likewise many of the functions are tabu-

lated, which still further reduces the labor.



CHAPTER VII

THE TRANSIT INSTRUMENT

90. The transit instrument consists essentially of a

telescope attached perpendicularly to a horizontal axis.

The cylindrical extremities of this axis are the pivots.

The straight line passing through their centers is the

rotation axis. The supports for the two pivots are called

the Vs. The straight line passing through the optical

center of the object glass and the rotation axis and per-

pendicular to the latter is the coUimation axis. By revolv-

ing the instrument about the rotation axis the collimation

axis describes a plane called the collimation plane. In the

common focus of the object glass and eye-piece is a system

of wires called the recticle. It consists either of spider

threads attached to a frame, or of fine lines ruled on thin

glass. An odd number of wires— usually five, seven or

eleven— is placed parallel to the collimation plane and

perpendicular to the collimation axis, over which the times

of transit of a star's image are observed. The middle wire

of the set is fixed as nearly as possible in the collimation

plane. One or two wires are placed perpendicular to these

to mark the center of the field of view. A micrometer

wire parallel to the first set is arranged to move as nearly

as possible in their plane. The axis of the instrument is

hollow. A light is placed so that the rays from it enter

the axis and fall on a small mirror in the center of the

telescope, which reflects them to the eye-piece in such a

way that the wires are seen as dark lines in a bright field.

The illuminating apparatus in some instruments is arranged

122
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Fig. 19

SO that the observer may change from dark lines in a bright

field to bright lines in a dark field,— a necessary arrange-

ment when the object to be observed is very faint. A
very common distribution of the

wires in the reticle is shown in

Fig. 19.

The instrument is so arranged

that its rotation axis can be

rotated 180° ; i.e.^ reversed^ about

a vertical line. The two posi-

tions are defined conveniently by

stating the position of the clamp

or graduated circle on the axis.

Thus, clamp W or clamp E, circle W or circle E^ denotes

that position of the instrument in which the clamp or

circle is west or east of the collimation plane.

An excellent form of transit and zenith telescope com-

bined is shown in Fig. 20. The circular base-plate of the

instrument is supported on three screws, with which the

instrument may be quickly leveled on its supporting pier.

The two standards which support the pivots of the instru-

ment are rigidly fixed to a circular plate, which may be

rotated freely through 180° on the base-plate when the

instrument is used as a zenith telescope [considered in the

next chapter]. When the instrument is used as a transit,

the two circular plates are clamped together, and remain

clamped. To reverse the instrument, the observer turns

the reversing crank (shown in the lower right corner of the

cut), which raises the two small inner standards until the

pivots are entirely free from the V's ; the axis, supported

on the two standards, is then turned gently through 180°,

and carefully lowered by turning the crank in the revei-se

direction, until the pivots rest in the V's. The illuminat-

ing lanterns are in position for the rays to pass through

the pivots. The level— in this form called the striding-

level— is shown resting on the pivots. The micrometer



Fig. 20
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box can be rotated 90° to make the movable wire perpen-

dicular to the rotation axis for the transit instrument, or

parallel to it for the zenith instrument. The cut shows

the micrometer in the latter position. A diagonal eye-

piece enables the instrument to be used with zenith stars.

The small circles attached to the sides of the telescope are

used for setting the telescope at the zenith distance or

altitude of the star to be observed. The vernier-arms bear

both coarse and delicate levels. When one of the verniers

is set at the proper reading for the star, the telescope is

moved in altitude until the bubble of the coarse level

"plays." The star will then pass through the approxi-

mate center of the eyepiece. It is made to pass between

the two horizontal wires by turning the slow-motion

screw.

Another common form of the transit instrument is that

in which one end of the axis is made to take the place of

the lower half of the telescope. A prism is placed at the

intersection of the telescope and axis. This turns the rays

of light through 90° to the eyepiece, which is in one end

of the axis. This form is sometimes called the broken or

prismatic transit.

An excellent form of the prismatic transit is shown in

Fig. 21. In this, the combined telescope and rotation axis

is mounted east and west, and the totally reflecting prism

is immediately in front of the object glass. It is provided

with a reversing apparatus, with a micrometer and delicate

zenith level, and can be used also as a zenith telescope.

This instrument is very compact, and therefore well

adapted for use in exploration or other cases where trans-

portation is difficult.

There are several considerations affecting all forms of

the transit instrument; viz.:

The instrument should be reversible without appreci-

able jarring.

The lamps used for illuminating the reticle, or for
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lighting the observing room, must be so placed that they

will not heat the instrument appreciably.

The supporting pier must be isolated from the floor of

the observing room, and should extend down to a firm

rock or soil foundation.

The observing room should be constructed so that it may
be thoroughly ventilated before observations are begun.

A sidereal chronometer or clock is a necessary com-

panion of the transit instrument. Refined observations

Fig. 21

should be made by the chronographic method, described

in § 68. In a fixed observatory, the clock should not be

mounted in the transit room, but in an interior room of

more constant temperature, where it can be placed equally

well in the electric circuit.

91. The transit instrument may be mounted so that its

collimation plane is either in the prime vertical, or in the

meridian. In the first casp it may be used to determine

the latitude ; but this method is practically superseded

by that of the zenith telescope, to be described later.

Mounted in the meridian, it is employed in connection

with a sidereal clock or chronometer to determine the
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time, the right ascensions of the stars or other celestial

objects, and the longitude of the observer, when great

accuracy is required; and we shall treat only this case.

Let us suppose that the axis is mounted due east and

west and that the middle wire is exactly in the collimation

plane. If the image of a star whose apparent right ascen-

sion is a is observed on the wire at the chronometer time

6', the chronometer correction A^ is given by (neglecting

diurnal aberration)

A^ = a - 6>. (214)

The observer may adjust his instrument as accurately

,as he pleases, but the adjustments will not remain, owing

to changes of temperature, strains, etc. It is customary

to put the instrument very nearly in the meridian when it

is first set up, and thereafter to vary the adjustments only at

long intervals of time. In general, therefore, the star will

be observed when it is slightly to one side of the meridian.

A determination of the errors of adjustment of his instru-

ment enables the observer to reduce the chronometer time

of observation to the chronometer time of meridian pas-

sage ; whence the chronometer correction is given by (214)

as before.

92. Theoretically, the rotation axis should be in the

prime vertical and in the horizon, and the middle wire

should be in the collimation plane.

The azimuth constant, a, is the angle which the rotation

axis makes with the prime vertical. It is + when the west

end of the axis is too far south.

The level constant, 5, is the angle which the rotation axis

makes with the horizon. It is -f- when the west end of the

axis is too high.

The collimation constant, <?, is the angle which a line

through the middle wire and the optical center of the

object glass— called the line of sight— makes with the
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coUimation plane. It is + when the middle wire is west

(in the eyepiece) of the coUimation plane.

It is required to correct the time of observation of a star

for the small deviations a, h and c.

Let SWNE in Fig. 22 represent the celestial sphere

projected on the horizon, Z the observer's zenith, NS the

meridian, WE the prime vertical, WQE the equator, and P

the pole. Suppose the rotation axis of the instrument lies

in the vertical circle AZB, and that the axis produced cuts

the sphere in A and B ; that the great circle N'Z'S' lies

in the coUimation plane; and that N"Z"S'\ parallel^ to

N'Z'8\ is described by the line through the middle wire

and the center of the object glass. When the stars are

observed on the middle wire they are on the circle

N"Z"S", whereas we desire to know the chronometer

time when they are on the meridian. Let be such a

star. The time required for the star to pass from to

the meridian is equal to the hour angle of measured from

the meridian toward the east. Let r represent it.

If we let 90° — m denote the hour angle and n the

declination of A, we have by definition,
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ZPA = 90° - m, ZA = 90° - b,

PZA = 90° + a, P0 = 90° - 8,

PA =90° - n, A0 = 90° + c,

PZ = 90° - ^, OPA = 90° - m + T.

From the triangle ZPA we have

sin n = sin 6 sin ^ — cos h cos <^ sin a, (215)

sin m cos n = sin 6 cos <fi + cos 6 sin cf> sin a

;

(216)

and from OPA
sin c = — sin n sin 8 + cos n cos 8 sin (t — m),

or
sin (t — m)= tan n tan 8 + sin c sec n sec 8. (217)

These equations are true for any position of the instru-

ment, and determine r when a, b and c are known. But

for the instrument nearly in the meridian a, b, c, m and

n are small, and the above equations become

n = b sin
<f>
— a cos <^, (218)

m = b cos
<l> + a sin ^, (219)

T = m + n tan 8 + c sec 8. (220)

(220) is Bessel's formula for computing the value of r.

Eliminating m and n from the three equations we obtain

Mayer's formula

^ = a.!HLC<^_^ + 5.£2!l^^ + c. 1 (221)
cos 8 cos 8 cos 8

in which the terms of the second member are the correc-

tions, respectively, for errors of adjustment in azimuth,

level and collimation.

For convenience, let us put

^^sinX^^-8}^ ^^ cos(<^-8)^ C = ^-> (222)
cos 8 cos 8 cos 8

and (221) becomes
T=aA+bB + cC. (223)

The effect of the diurnal aberration is to throw the star

east of its true position. It is therefore observed too late,
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and the time of observation must be diminished by the

quantity, (116),

0".31 cos <^ sec S = 0*.021 cos </> C. (224)

For greater accuracy the star is observed over several

wires. An odd number of wires is always used. They
are generally placed very nearly equidistant, or very nearly

symmetrical with respect to the middle wire. Were either

of these arrangements exactly realized the mean of all the

times of transit would be the most probable time of transit

over the middle wire. This never happens, however, and

it is necessary to determine the intervals between the wires.

Let i denote the angular distance between a side wire

and the middle wire ;
* / the interval of time required by

a star whose declination is S to pass through this distance.

From Fig. 13, letting the two positions of the micrometer

wire represent the side wire and the middle wire, we have

in the triangle CS'P,

CS' = i, S'P = 90° - 8, CPS< = I;

and we can write

sin / = sin i sec 8 = sin i C. (225)

If the star is not within 10° of the pole, it is sufficiently

accurate to use
I=isecS = iC. (226)

Suppose there are five threads in the reticle, numbered

I, II, III, IV, V, beginning on the side next to the clamp,

and that the clamp is west. Let ij, t^, t^, t^, t^, be the

observed times of transit of the star over the wires, and

hi i^i h^ h'>
^^^ distances of the four side wires from the

middle wire.f The five observed transits give for the time

* That is, the angle subtended at the optical center of the object glass

by lines drawn to the side wire and to the middle wire. It is also meas-

ured by the interval of time required for a star in the equator to pass from

the side wire to the middle wire.

t For clamp west, U and 15 are negative ; for clamp east, I'l and 12 are

negative.
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of crossing the middle wire either t^ + ij (7, ig + h ^i

^3, t^ + i^ (7, or t^ + \ (7, which would all be equal if the

observations were perfect. Taking their mean, the most

probable time of crossing the middle wire is

h + h + <3 + ^ + ^5
, h+iz+ii+isr-+

^
o.

If we let

^ _ ^ + <2 +
5

0„ = ^ + ^2 + ^3 + <4 + ^5

^ (227)

and
. _ I'l + 12

5
.^^ini^+ii±i5^ (228)

the most probable time of crossing the middle wire is

^™ + i«C. (229)

Om is the time of crossing a fictitious wire called the

mean wire, and ^„,Cis the reduction from the mean wire to

the middle wire.

The above method holds good also in the case of an

incomplete transit; that is, one in which the transits over

some of the wires have been missed. Thus, suppose that

the wires I and IV have been missed. The three remain-

ing transits give for the times of crossing the middle

wire <2 + H ^1 ^31 % + ^5 ^j and their mean is

^g "^ ^« ^ ^' + ^2-±il c, (230)
o o

and similarly in other cases.

In accurate determinations of the time several stars will

be observed, and if the chronometer has a sensible rate, the

chronometer corrections at the several times of observation

will be different. To equalize them, let 6q be some chro-

nometer time near the middle of the series of observations,

let a star be observed at the time ^^, and let the rate of

the chronometer be S6. During the interval ^^ — 6q the

chronomter loses

($„-$,) 80. (231)



132 PRACTICAL ASTRONOMY

If this quantity be computed for all the stars observed and

applied to the observed times, the resulting chronometer

corrections furnished by the several stars will be the cor-

rections at the instant 6q, and with perfect observations

would all be equal.

Collecting the expressions (223), (224), (229) and (231),

we have for the observed time of crossing the meridian

when the clamp is west,

6' = d,„ + aA +bB + cC- 0».021 cos <^C + i„C + {$„ -6^)8$; (232)

and therefore, by (214),

Ae=a-ie^+ aA+bB-{-{c- 0'.021 cos <^ + i„) €+{6^- 6^) 8^] . (233)

For clamp east it is easily seen that c and i^ change sign

;

otherwise the formula remains the same.

The formula has been deduced for a star observed at

upper culmination. For a star observed at lower culmina-

tion we have only to replace S by 180° — 8 in the factors

J., B and (7, and they become

4 ^ sin (<^ + 8)
^ ^ ^ cos(<^ + 8)

^ ^^ ]__ .234)

cos 8
'

COS 8
'

COS 8

The factors J., B and C are readily computed with four-

place tables. But when an instrument is set up perma-

nently, as in an observatory, their values should be

computed for every degree of declination, and tabulated.

For polar distances less than 15° it is convenient to have

them tabulated for every ten minutes of declination.

DETERMINATION OF THE WIRE INTERVALS

93. (ay If the instrument is provided with a micrometer

in right ascension, set the micrometer wire in succession

on each of the fixed wires.* The differences of the microm-

* More accurate readings will be obtained, as in many other cases, by

setting ttie micrometer wire on each side of the fixed wire and just in

apparent contact with it. The mean of the readings in the two positions

is the reading for the coincidence of the two wires.
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eter readings on the side wires and the middle wire give

the intervals in terms of one revolution of the screw, which

will have been obtained by the methods of § 61.

Example. Friday, 1891 Feb. 20. The transit instrument

of the Detroit Observatory. Four sets of micrometer read-

ings were made when the micrometer wire was in contact

with each side of the fixed wires, to find the wire intervals

and i,„. The numbers in the last line are the means of all

the readings on the corresponding wires. The value of

one revolution of the screw is, § 61, i2 = 45".042 = 3^003.

I n m IV V

29.966 27.443 24.891 22.861 19.797

30.130 27.620 25.054 22.523 19.965

29.969 27.445 24.890 22.357 19.799

30.131 27.621 25.058 22.527 19.970

29.968 27.448 24.895 22..363 19.802

30.135 27.618 25.060 22.528 19.969

29.968 27.445 24.898 22.356 19.797

30.135 27.623 25.062 22.526 19.969

30.050 27.533 24.976 22.443 •19.883

z\ = (30.050 - 24.976) i2 = + 15,.237,

ig = (27.533 - 24.976) R=+ 1 .679,

«4 = (22.443 - 24.976) R = - 1 .607,

tg = (19.883 - 24.976) i? = - 15 .294.

im = + 0'.003 for clamp west,

t'm = — .003 for clamp east.

(6) Observe the transits of a close circumpolar star

over the several wires, and solve (225) for the intervals i.

It is convenient and sufficiently accurate to use (225) in

the form
"°'^

(235;= sin I-
15 sin 1"
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Solving as in the case of (159), the resulting values of i

will be expressed in seconds of time.

Example. Monday, 1891 March 16, \ Ursce Minoris

was observed at lower culmination with the transit instru-

ment of the Detroit Observatory, clamp east, as below.

Required the wire intervals. From the Amer. Ephem.,

p. 304, h = 88° 67' 47".3.

Wires Ohronom. / / sin / i

I 7» 2"' 37' - 14"i 3' - 3° 30' 45" 8.787222,. - 15».245

II 9 35 - 7 5 - 1 46 15 8.489986,, - 7.689

III 16 40

IV 23 40 + 70' + 1 45 8.484848 + 7.599

V 30 46 + 14 6 + 3 31 30 8.788762 + 15 .299

A number of stars should be observed in this way, and

the mean of all the results adopted as the wire intervals.

DETERMINATION OF THE LEVEL CONSTANT

94. The level constant h is generally found by means

of a spirit level, as explained in § 62. However, the level

is applied to the outer surface of the cylindrical pivots and

does not give the inclination of the axis, which passes

through their centers, unless their radii are equal.

To determine the inequality of the pivots and the

method of eliminating it, let A and B^ Fig. 23, be the

L'

Fig. 23

centers of the west and east pivots, for clamp west; ilf and

M' the vertices of the Vs in which the pivots rest ; L
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and X' the vertices of the V's of the level ; and HM' a

horizontal line. Then BAO = BAD is the inequality of

the pivots, which we shall represent by p. If we let

B' = the inclination given by the level for clamp west,

B" = the inclination given by the level for clamp east,

h' = the true inclination for clamp west,

h" = the true inclination for clamp east,

/8 = the constant angle HM'M,

we can write

b' = B' -\-p = p —p, for. clamp west,

h" = B" —p = /i +p, for clamp east;

&nd therefore

P = B" - B'

(236)

(237)

(238)

When p has been determined, the value of the level

constant is given by (236) or (237).

The value of p should be determined a large number of

times, and the mean of all the individual results adopted

as its final value. In making the observations the telescope

should be set at different zenith distances, to detect any

variations of the pivots from a cylindrical form.

Example. 1891 Feb. 17. The following observation

was made on the pivots of the Detroit Observatory transit

instrument. Required the inequality of the pivots and

the inclinations of the rotation axis. The value of one

division of the striding level \sd= 1".878 = 0M25. [See

§ 63.]

Clamp Zenith

Distance

Level Direct Level Beversed

w e w' e<

W
E

N. 30°

S. 30

7.2

5.2

9.6

11.7

15.6

13.5

1.3

3.4
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From (166),

h = B' = + 2.975 d = + 0».372, for clamp west

;

b = B" = + 0.900 d = + 0».112, for clamp east.

Substituting these values in (238), we find

j9 = -0».065;

and therefore, from (236) and (237),

b' = + 0«.372 - 0».065 = + 0«.307,

b" = + 0«.112 + 0'.065 = + 0'.177.

The mean of twenty-two determinations of p for this in-

strument gave p = — 0^066 ± 0^001.

Another method of determining the level constant is

given in § 97, (c?).

95. We have supposed that the V's in which the pivots

rest and the V's of the level are equal, as is usually the

case. If they are unequal, let

2v= the angle of the level V,

2 Vi = the angle of the V of the pivot bearing

;

and it can be shown that the inequality of the pivots is

given by
B" - B' sin v.

sin V + sin v-^

(239)

Again, the pivots may not be truly cylindrical. If

irregularities are surely found to exist, the instrument

should be returned to the maker for improvement; or, if

that is not practicable, a table of corrections may be con-

structed for all possible positions of the telescope. It

should be emphasized that observations depending upon

faulty pivots are very unsatisfactory. The pivots fur-

nished by the best modern instrument makers seldom

show appreciable defects.
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96. The forms and inequality of

the pivots may be investigated

very satisfactorily by the Harkness

spherometer, shown in Fig. 24.

The method of applying it to the

determination of irregularities in a

supposed circular section of a pivot

is apparent. To determine the in-

equality p of two pivots, let

D = the difference of the spherometer

readings on the two pivots,

P = the linear pitch of the screw,

•L = the distance between tlie V's of the

transit instrument (expressed in

the same units as P), and

2v = the angle of the spherometer V's.

Then it can be shown that

DP
15 Z, sin 1"(1 + sin v)

(240) Fig. 24

DETERMINATION OF THE COLLIMATION CONSTANT

97. (a) Bi/ a distant terrestrial object. Place the tele-

scope in a horizontal position and select some well-defined

distant point whose image is seen near the middle wire.

With the micrometer measure the distance of the image

from the middle wire in the two positions of the instru-

ment. Call this distance D' for clamp west, J)" for clamp

east ; D' and D" being positive or negative according as

the middle wire is west or east (in the eyepiece) of the

image. The collimation constant is then given by

c = 1 (ly - D"), for clamp west. (•241)

For clamp east the sign of c is reversed.

Example. Saturday, 1891 April 4. The following

observations on a distant object nearly in the horizon were

made with the transit instrument of the Detroit Observa-
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tory. Required the value of c. The value of one revolu-

tion of the screw is 3*.003.

Clamp III Micrometer on image Micrometer on ]

W W. of image 34.067 24.792

.065 .795

.058 .793

Mean 34.063 Mean 24.793

E W. of image 15.750 24.794

.744 .792

.752 .795

Mean 15.749 Mean 24.794

We have
D' =(34.063- 24.793) i2 = + 9.270 i2,

D" = (24.794 - 15.749) i? = + 9.045 R
;

and therefore, from (241),

c = - 0.112 R = - 0».336, for clamp west.

(Z>) By a collimator. This is an ordinary telescope,

preferably of the same size as the observing telescope,

placed at the side of the observing room, and mounted on

an isolated pier in the line of sight of the observing tele-

scope when that is turned into a horizontal position.

Spider threads— usually one vertical and one horizontal—
are placed exactly in the principal focus of the collimator.

When the wires are suitably illuminated by a light shining

through the collimator eyepiece, the rays which radiate

from them emerge from the collimator object glass in

parallel lines, just as if the threads were situated at an

infinite distance. When the transit telescope is directed

to the collimator, the observer will see in the focus of his

instrument the images of the spider threads in the colli-

mator. The vertical image forms a perfect mark from

which to determine the collimation constant, by the same

process as that described above (a), for a distant terrestrial

object. While the threads in the collimator are virtually
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at an infinite distance, they are in reality only a few feet

from the observer, and thus the atmospheric disturbances

which affect observations on a distant terrestrial mark are

eliminated.

(c) By a circumpolar star. Observe the transit of a

close circumpolar star over the first two or three wires;

then quickly reverse the instrument and observe the tran-

sit over as many of the same wires as possible, being sure

to determine the level constant both before and after revers-

ing. Reduce the times of transit in the two positions to

the equivalent times of crossing the middle wire. Let d^

and $2 be these times, and let b' and b" be the level con-

stants for clamp west and clamp east. Then by (233),

for clamp west.

Ad = a - 61 - aA - b'B - cC + 0'.021 cos </> C;

*

and for clamp east

A0 = a-e2-aA - h"B + cC + 0'.021 cos (^ C.

Subtracting and solving for c we obtain

c = K^2 - ^1) cos 8 + i (6" - 6') cos (<^ - 8). (242)

For lower culmination, 8 being replaced by 180° — 8,

c = - K^2 - ^1) cos 8 - I (h" - h') cos (<^ + 8). (243)

An example is given in § 103.

(d^ By the nadir. If the telescope be directed verti-

cally downward to a basin of mercury, and a piece of glass

be placed diagonally over and close to the eyepiece in

such a way that light from a lamp at one side will be

reflected into the telescope, the middle wire and its image

reflected from the mercury may be seen near together.

Measure with the micrometer the distance between the

middle wire and its reflected image. Let M be this dis-

tance, and consider it positive when the wire is west (in

* The correction for rate will be small compared with the probable

«rror of a transit of a slowly-moving northern star, and may be neglected.
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the eyepiece) of its image. If the rotation axis is hori-

zontal we have M =2c; but if there is a level constant 6,

the distance is diminished by 25, so that M=2c — 2b', or

c = \M + b. (244)

With well-constructed instruments, the collimation con-

stant usually remains practically unchanged during a series

of observations. The level constant, on the contrary,

sometimes varies rapidly. Further, the spirit level is not

always trustworthy. Many excellent observers do not use

the striding level, but determine the level constant by the

method of the nadir, described above. The collimation con-

stant having been determined by one of the many available

methods— usually by the aid of two coUimations in the

case of large instruments— the value of the level constant

is given by (244), thus

:

b = c-lM. (245)

If we wish to determine both the level and collimation

constants by the method of the nadir, we measure the dis-

tances of the middle wire from its reflected image in the

two positions of the instrument; calling this distance +
or — according as the middle wire is west or east of its

image. Let

M' = the distance for clamp west,

M" = the distance for clamp east,

b' = the level constant for clamp west,

b" — the level constant for clamp east.

We have,. for clamp west,

G±\Mi+b',

and for clamp east,

-c= M"+b>i.

Therefore
c = i(M'-M") + ^(b'-b"),

b'+b"=-:^(M>+AI>').
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From (236) and (237), V - b" = - 2p. Therefore

c= ^(M'-M")-p,c\3imY,yvest, (246)

c = - 1 (!/' - M") + p, clamp east, (247)

b' =-l(M'+ M") - p, clamp west, (248)

b"=-\ (M' + M") + p, clamp east, (249)

Example. 1891 July 24. The following nadir observa-

tions were made with the transit instrument of the Lick

Observatory. Required the values of c, h' and b"

.

Clamp Micrometer on middle wire Micrometer on image

W 11.025 10.847

.125 .852

Mean 11.075 Mean 10.849

E 11.020 11.164

.135 .166

Mean 11.077 Mean 11.165

The middle wire was east of its image in both cases.

For this instrument, p=- 0\021, R = 2\931. We have

M' = - (11.075 - 10.849)R=- 0'.662,

M"=- (11.165 - 11.077)72 = - .258.

Therefore
c = - OMOl + 0».021 = - 0«.080, clamp west,

6' = + .230 + .021 = + .251,

6" = + .230 - .021 = + .209.

(e) By two collimators. When the observing telescope is

large, it is inconvenient and very undesirable to determine

the collimation constant by any method which involves

reversing. This is avoided by using two collimators, one

north and the other south of the instrument, the object

glasses of the two collimators being turned toward each

other and toward the center of the transit instrument.

The view of one collimator from the other collimator is

obstructed by the intervening transit instrument ; but in

large instruments apertures are provided on opposite sides

of the enlarged central section of the transit telescope, so
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that when the telescope is directed to the nadir, and the

coverings of the apertures removed, the view is unob-

structed. The vertical thread in one collimator and the

horizontal thread in the other collimator are usually

movable by micrometer screws.

Let the vertical micrometer thread in one collimator be

brought into exact coincidence with the fixed vertical

thread in the other. The lines of sight of the two colli-

mators will then be exactly parallel, and the two vertical

threads, viewed by the transit telescope, will represent

objects virtually at an infinite distance and having azimuths

differing exactly 180°. Measure the distance D' from the

middle wire of the transit reticle to the image of the north

collimator thread, and the distance D" from the middle

wire to the image of the south collimator thread, calling

these distances + or — according as the middle wire is

west or east (in the eyepiece) of the collimator images.

Then we shall have
c = l{D + D"). (250)

DETERMINATION OP THE AZIMUTH CONSTANT

98. The azimuth constant a can be determined only

from observations of stars. Let two stars (a^, Sj) and

(ag, ^2) be observed. When all the constants except a

have been determined, the times of observation of the two

stars can be corrected for all errors save the azimuth.

Let 6^ and 0^ be the times so corrected. Then (233)

reduces for the first star, to

A^ = Uj - ^1 - aA^,

and for the second star, to

A^ and A^ being the values of A corresponding to h^ and h^.

Combining these equations, we obtain

q ^ («i - ^1) - (^2 - ^2)
(251)
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It will be seen that to determine a accurately, all the

other constants of the instrument must be well determined,

since errors in any one or more of them affect the values of

6^ and 6^. If the instrument is not mounted in a very

stable manner, the right ascensions a^ and a^ should differ

as little as possible. The value of a will be determined

best when the denominator A^ — A^ is as large as possible.

If both stars are observed at upper culmination, one should

be as far south as possible and the other as near the pole

as possible, in which case A^ and A^ will be large and

opposite in sign. This condition will be fulfilled still

better by observing one star (a^, B{) at lower culmination
' and the other Qa^, Sg) at upper culmination, both as near

the pole as possible and differing nearly 12^ in right ascen-

sion. In this case a^ must be replaced by 12'' + a^ and 8^

by 180° — 3j in the various formulae. Stars observed at

lower culmination are marked S. P. (sub polo).

MERIDIAN MARK, OR MIRE

99. If a transit instrument is to be used for making long

series of observations, as at a fixed observatory, it is well

to have a permanent meridian mark, or mire, to assist in

determining the azimuth constant. The mark consists

usually of a minute circular hole in a metal plate mounted

on a firm pier at a considerable distance to the north or

south of the instrument. An isolated pier in the transit

room carries a lens whose center is in the line joining the

mark and the center of the transit instrument, the focal

length of this lens being equal to the distance of the mark

from the lens. When the mark is illuminated by a lamp

or electric light [controlled by a switch in the transit

room] placed behind the metal plate, the rays which fall

on the mire lens will be transmitted as parallel rays to

the observing telescope, and the observer will see a well-

defined image of the mark in the focus of his instrument.
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The focal length of the mire lens should be great, in order

that the mark may be at a considerable distance, thereby-

reducing the angular value of any possible motion of the

mark. The mire lens for one of the instruments at Pul-

kowa has a focal length of 656 feet. One at the Lick

Observatory has a focal length of 80 feet. Well mounted
mires have been found to be almost constant in azimuth

for months at a time.

The azimuth of the transit instrument having been de-

termined from observations of a pair of azimuth stars, by

the methods of the preceding section, the azimuth of the

mire may be determined by measuring the angle between

the mire and the middle wire with the micrometer, and

combining the result with the known colliraation and azi-

muth constants. The mean of a long series of such deter-

minations may be adopted as the azimuth of the mire ; and

thereafter a measure of the angle between the mire and

middle wire, combined with the known collimation con-

stant, will determine the azimuth constant. Nevertheless,

the observation of star pairs for azimuth should be made
as usual, and the results thus obtained combined with

those obtained from the mire. The relative weights to be

assigned to the results from the two methods will be evi-

dent after a short experience with them.

If the mire is mounted at a small angle /above or below

the horizon of the instrument, the measured angle between

the mire and meridian should, in reality, be multiplied by

sec J, but that is a constant factor, and with most mires

need not be taken into account.

A'DJUSTMENTS

100. To set up the instrument, it should first be placed

by estimation as nearly as possible in the meridian, and the

following adjustments made in the order indicated.

1st. To bring the wires in the common focus of the eye-

piece and objective, slide the eyepiece in or out until the
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wires are perfectly well defined. Then direct the telescope

to a very distant terrestrial object, or to a star, and move

the tube carrying the wires and eyepiece until an image of

the object seen on one of the wires will remain on the wire

when the position of the eye is changed. Polaris is a good

star for this purpose, since its image will move very slowly.

When the wires are placed satisfactorily in the focus of

the objective, the tube carrying them should be clamped

firmly, and remain unmolested indefinitely. Different

observers will require only to alter the distance of the

eyepiece from the wires in order to bring both star and

reticle into focus. This adjustment should be made when

ithe atmosphere is steady. .

2d. Make the level constant very nearly zero, testing it

by the method of § 94.

3d. To make the wires perpendicular to the axis, direct

the telescope to a well-defined mark and bisect it with the

middle wire. Adjust the reticle so that the object remains

on the wire when the telescope is rotated on its axis.

The intersection of the two wires of a collimator furnishes

an excellent mark for this purpose.

4th. Test the coUimation by the methods of § 97, (a),

(6), (<?) or (e), and move the reticle sidewise until c is

made very small.

6th. To set the finding circle, direct the telescope to a

• bright star near the zenith, whose declination is h. When
the star enters the field of view move the telescope so that

the star describes a diameter of the field, and clamp the

instrument. If the circle is designed to give the zenith

distances, set it at the reading

2 = <^ — S.

It will then read correctly for all other stars, neglecting

the refraction.

6th. To adjust the instrument in azimuth, direct the

telescope to a star near the zenith whose right ascension
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is Uy Observe its transit over the middle wire, and let the

chronometer time of transit be dy The approximate chro-

nometer correction is

A^j = ttj — ^j.

Set the telescope for a circumpolar star whose right ascen-

sion a^ is a few minutes greater than a^ It culminates

approximately at the chronometer time

Rotate the whole instrument horizontally so that the star

is on the middle wire at the instant when the chronometer

indicates the time 02-

7th. Repeat the 2d adjustment.

8th. Repeat the 6th adjustment.

9th. The final adjustment in azimuth should be tested

by the method of § 98.

DETERMINATION OF TIME

101. When the chronometer correction is required to

be known very accurately, it is customary to observe the

transits of ten or twelve stars. The observing list should

be made out very carefully, in advance. Half the stars

should be observed with clamp west, the other half with

clamp east, since any errors in the adopted values of i„^

p and c will be practically eliminated by reversing the

instrument. To determine a well, a pair of azimuth stars

should be observed before reversing, and another pair after

reversing. The remaining stars on the list should be those

which culminate near the zenith, or between the zenith and

equator ; since the zenith stars are affected least by an error

in the adopted value of a, and the time of transit can be

estimated most accurately for the rapidly moving equa-

torial stars. There is no method of eliminating an error

in 6, and it must be very carefully determined. A good
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program to follow, witli small or medium-sized instru-

ments, is

Take the level readings

Observe half the stars

Take the level readings

Reverse the instrument

Take the level readings

Observe half the stars

Take the level readings

If there is time between the stars for making further level

readings, they should be made. In reversing, the instru-

ment should be handled very carefully to avoid changing

the constants.

102. Example. Wednesday, 1891 Feb. 25. The follow-

ing observing list was prepared and the stars observed by

No. Object Mag. a 5 . Setting

(1) Level

(2) IT Cephei, S. P. 4.6 23» 4" 20* 74° 47'.9 N. 62° 55'

(•^) 8 Leonis 2.3 11 8 20 21 7 S. 21 10

(4) V Ursce Majoris 3.3 12 37 33 41 S. 8 36

(5) o" Leonis 4.1 15 32 6 38 S. 35 39

(6) X Draconis 3.3 25 69 56 N. 27 39

(7) Level

Reverse

(8) Level

(9) \ Ursce Majoris 3.8 40 19 48 23 N. 6 6

(10) P Leonis 2.0 43 31 15 11 S. 27 6

(11) j8 Virginis 3.3 45 2 2 23 S. 39 54

(12) y Ursce Majoris 2.3 48 8 54 18 N. 12 1

(13) Level

(14) c Corvi 3.0 12 4 32 -22 1 S. 64 18

(15) 4 H. Draconis 4.6 7 12 78 13.2 N. 35 56

(16) Level

the eye and ear method with the transit instrument of the

Detroit Observatory, to determine the correction to side-

real chronometer Negus no. 721. The stars were selected

from the list in the Berliner Astronomisches Jahrhueh, pp.
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190-327. For convenience in referring to them in the re-

ductions they are numbered, together with the level obser-

vations, in the first column. Their magnitudes are given

in the third column. The "Setting" is the reading at

which the circle is to be set for observing each star. The
circle of this instrument reads zero when the telescope

points to the zenith and the degrees are numbered in both

directions from the zero. The setting is therefore the

zenith distance.

The level observations and their reductions are

(1) (7) (8) (13) (16)

W. E. W. E. W. E. W. E. W. E.

15.1 9.1 15.1 9.3 15.3 9.0 14.3 10.3 14.6 10.1

12.0 12.1 13.7 10.8 8.6 15.9 11.0 13.5 11.0 13.5

12.1 12.1 13.6 10.8 9.0 15.4 10.7 13.9 11.1 13.5

15.2 8.9 14.8 9.5 15.1 9.4 14.0 10.5 14.4 10.1

B' + 1 .525d + 2 AOOd B" - .212d + .22od + .487d

B' + 0M91 + 0'.262 B" - 0'.026 + 0».028 -1- 0».061

p -0».066 - 0'.066 p - 0«.066 - 0».066 - 0'.066

b' +0'.125 + 0'.196 ' b" +0».040 + 0'.094 -1- 0M27

The times of transit over the five wires are given below.

01. Object I n m IV V 0m b

w (1) s s s s h m s h m s + 0».125

(2) 43.9 14.6 45.3 16.0 10 48 47.4 10 49 45.44 .136

(•^) 26.8 35.0 43.0 51.1 53 59.3 53 43.04 .146

(4) 41.8 50.9 0.0 9.2 58 18.3 58 0.04 .166

(5) 40.0 47.6 55.3 3.0 11 1 10.8 11 55.34 .164

(6) 37.1 59.3 21.5 43.9 11 6.1 10 21.60 .188

(7) .196

E (8) .040

(9) 5.6 54.3 42.9 31.2 25 19.6 25 42.72 .057

(10) 10.2 2.4 54.5 46.5 28 38.6 28 54.44 .067

(11) 40.7 33.2 25.6 17.9 30 30 29.35 .072

(12) 57.2 44.2 31.1 18.0 33 4.8 33 31.06 .080

(13) .094

(14) 12.1 3.9 55.6 47.4 49 39.3 49 55.66 .114

(15) 49.2 11.5 34.2 56.4 51 19.4 52 34.14 .120

(16) .127
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For clamp east, and for lower culmination clamp west, the

transits occurred in the order V, IV, III, II, I. The mean
of the observed times is given in the column ^„^. The

values of 6 are those found by interpolating for the instant

of observation, assuming its value to vary uniformly with

the time between two consecutive determinations.

Observations for determining the coUimation constant

c were made by the method (a), § 97, on the preceding

afternoon and the following forenoon, wTiich gave for

clamp west c = + 0^112 and c = + 0*.108, respectively.

We shall adopt their mean, c = + 0^110.

Th,e hourly rate of the chronometer was + 0M5. Let

it be required to determine the chronometer correction at

the chronometer time 0q = 11'' 20"*, which is approximately

the mean of the observation times. The correction for

rate is ((9„, - 11" 20"*) 0M5.

For convenience, let c — 0^021 cos 4> -\-ijn = c\ and we
have

c' = + OMIO - 0'.015 + 0».003 = + 0'.098, for clamp west,

c' = - OMIO - 0*.015 - 0«.003 = - 0^128, for clamp east.

Star (11) was observed over only the first four wires.

In this case i^ — — \ ih + h + h^ — — 3^827, and

c' = - OMIO - 0^015 - 3*.827 = - 3^952.

The values of A, B and O are taken from a table com-

puted for the latitude of the Detroit Observatory. They
are used here to three decimal places ; for ordinary work
two are sufficient. To illustrate the application of (222)

and (234), we shall compute J., B and O for the stars

(2) and (3).
(2) (2) (3) (3)

s 74° 47'.9 A + 3.395 8 21° 7' A +0..387

<i>
42 16.8 B - 1.736 ^ 42 17 B +1.000

sin (^ + 8) 9.9496 C - 3.813 sin (<^ - 8) 9.5576 C +1.072
cos (<^ + 8) 9.6582„ cos (^ — 8) 9.9697

sec 8 0.5813 sec 8 0.0302

The apparent right ascensions are taken as accurately

as possible from the Jahrhuch. We are now prepared to



150 PRACTICAL ASTRONOMY

fill in the columns A, B, (7, Hate, e' C, hB and a; after

which we can determine a, and thence aA and 0'.

Star A £ C Bate e'C bB aA 0' a A9 Wt.

8 g 8 s h m 8 h m 8 m 8

(2) + 3.895 -1.736 -3.818 -.08 -0.37 -.24 -1.86 10 49 43.39 11 4 20.01 + 14 36.62

(3) + .887 + 1.000 + 1.072 -.07 + .11 + .15 - .15 53 43.08 8 19.66 36.68 2

(4) + .179 + 1.187 + 1.200 -.06 + .12 + .19 - .07 58 0.22 12 36.77 86.55 2

(5) + .587 + .819 + 1.007 -.05 + .10 + .13 - .28 11 55.29 15 81.78 86.49 2

(6) -1.353 + 2.582 + 2.915 -.02 + .29 + .49 + .54 10 22.90 24 59.52 86.62 1

(9) - .160 + 1.497 + 1.506 + .01 - .19 + .09 + .06 25 42.69 40 19.26 86.57 2

(10) + .472 + .922 + 1.036 + .02 - .13 + .06 - .16 28 54.28 43 80.82 86.59 2

(11) + .642 + .768 + 1.001 + .03 -3.95 + .06 - .22 30 25.27 45 1.77 36.50 2

(12) - .357 + 1.676 + 1.714 + .03 - .22 + .13 + .12 38 81.12 48 7.67 86.66 1

(14) + .972 + .468 + 1.078 + .07 - .14 + .05 - .84 49 55.30 12 4 81.81 86.51 1

(15) -2.875 + 3.966 + 4.898 . + .08 - .63 + .48 + 1.00 62 35.07 7 11.5S + 14 86.51

Using stars (2) and (6) to determine a we have

ai = ll* 4™20«.01,

01 = 10 49 44 .75,

ij-0j = + 14 35.26,

^1 = + 3.395,

a2 = ll*24'»59'.52,

^2 = 11 10 22 .36,

02-^2 = + 14 37.16,

A^ = - 1.353;

and therefore, from (251), a = — 0^400. Similarly, from

(14) and (15) we obtain a = — 0*.348. Using these as

the values of a for clamp west and east respectively, we
form the column aA. All the corrections have now been

computed. Substituting them in (233) for each star, we
obtain the values A^.

Stars (2) and (15) were observed solely to determine a,

and the values of A^ furnished by them will be given a

weight 0, in the last column. Assigning a weight 2 to the

stars which culminate near the zenith and between the

zenith and equator, and a weight 1 to those outside these

limits, for the reasons given in § 99, we obtain for the

weighted mean of the chronometer corrections,

A0 = + 14'» 36».55± 0».009,

which we shall adopt as the chronometer correction at the

time Oq = ll'* 20'".
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103. To illustrate the determination of c by the method

of § 97, (c), Polaris was observed at lower culmination

the same night, as below.

Polaris Level

Clamp W V 12A52™ 6» Clamp W Clamp E
« IV 12 57 51 WE WE

Reversed 13.9 10.2 9.9 14.0

Clamp E III 13 3 22 12.0 12.0 11.4 12.5

IV 13 9 3 12.1 12.0 11.4 12.4

" " V 13 14 54 13.8 10.2 9.8 14.0

The intervals of time required for Polaris to pass from

V to 'III and from IV to III are given by (225) first put-

ting it in the form

sin / = 15 sin 1" sec 8. i.

The value of 8 was + 88° 43' 49". Substituting i^ = 7^607

and tg = 15*.294 successively for i in the formula, we find

I^ = 1° 25' 50" = 5'» 43».3, I^ = 2° 52' 37" = 11» 30«.5

;

and therefore the equivalent times of transit over III are

Clamp W
12** 52™ 6» + 11™ 30«.5 = 13'* S™ 36».5

12 57 51 + 5 43.3 = 13 3 34.3

Clamp E
13** 3™ 22' = 13)* 3™ 22».

13 9 3 - 5™ 43».3 = 13 3 19 .7

13 14 54 - 11 30 .5 = 13 3 23 .5

Taking the means for clamp west and clamp east, we obtain

$^ = 13'* 3™ 35«.4, $2 = 13'* 3™ 21'.7.

The level constants given by the above observations are

b' = + 0'.050, b" = -0*.096.

Substituting these in (243) we obtain . .

-_ c = + 0*.091, clamp west.
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REDUCTION BY THE METHOD OF LEAST SQUARES

104. In case the chronometer correction is required

with all possible accuracy, the series of transit observations

should be reduced by the method of least squares. Let us

assume that the level constant, the rate and i^ are accu-

rately determined, and that the chronometer correction,

the azimuth constant and the collimation constant are to

be obtained from the observations. To avoid dealing with

large quantities, let A^^ be an approximate value of A^,

and X a small correction to A^q, such that

A^o + ^ = ^^- (252)

Further, let

A^o +0„ + bB- 0..021 cos <^ C + /„ C + (^„ - ^„) 89 - a = d. (253)

Then (233) takes the form

aA ± cC + X + d = 0, (254)

the lower sign being for clamp east. A value for A^^

having been assumed, all the terms in (258) are known
for each star. Therefore, a, c and x are the only unknown
quantities in (254). Each star furnishes an equation of

this form, and their solution by the method of least

squares gives the most probable values of a, c and x;

and therefore, by (252), the most probable value of A^.

105. The accuracy with which the time of transit of a

star over a wire can be estimated depends upon the power

of the instrument and the declination of the star.- As-

sistant Schott of the Coast Survey* discussed a large

number of observations, and found that the probable error

of the observed time of transit over one wire is best repre-

sented by

€ = V (0.063)2 ^ (0.036)2 tan2 8, for large instrumente,

e = V (0.080)2 + (0.063)2 tan2 8, for small" instruments.

* See U. S. Coast and Geodetic Survey Report for 1880.
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The values of e given in the table below are computed

from these for the different values of B. If 1 be the

weight of an observation of an equatorial star, e^ its

probable error, and p the weight of an observation of

any other star we have, from theory,

P =

For large instruments, Cq = 0^063, and for small ones,

Cq = 0^080. Substituting the values of e in this equation

we find the following values of p.

8

Large Instruments Small Instruments

e p \/p e p Vp

0° ± 0'.06 1.00 1.00 ± 0».08 1.00 1.00

10 .06 1.00 1.00 .08 .98 1.00

20 .06 .98 1.00 .08 .92 .96

30 .07 .91 .95 .09 .83 .91

40 .07 .82 .90 .10 .70 .83

50 .08 .69 .83 .11 .53 .73

55 .08 .61 .78 .12 .44 .66

60 .09 .51 .71 .14 .34 .59

65 .10 .40 .63 .16 .26 .51

70 .12 .29 .54 .19 .18 .42

75 .15 .18 .43 .25 .10 .32

80 .21 .09 .30 .37 .05 .22

• 85 .42 .02 .15 • .72 .01 .11

86 .52 .015 .122 .90 .008 .088

87 .69 .008 .091 1.21 .004 .066

88 1.03 .004 .061 1.82 .002 .044

89 2.06 .001 .031 3.70 .000 .022

90 00 .000 .000 oo .000 .000

The observation equations (254) should be multiplied

through by the square roots of their respective weights

before forming the normal equations. (254) becomes

Vp (aA ±cC + X + d)=0. (255)
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In case some of the wires have been missed, the weight

is diminished. If we let

N = the whole number of wires,

n = the number of wires observed,

1 = the factor for an observation over the N wires,

P = the factor for an observation over n wires,

then the weight for an incomplete transit is pP. '

Assistant Schott found that we should use

1+M
NP = :r-;;, for large instruments,

1 +
1.6'

(256)

1+2:5
NP = ?r;-, for small instruments.

1 +
2.0'

(257)

The following table gives the value of P for reticles con-

taining seven and five wires, for the different values of n.

Large Instrnments Small Instnunents

n P n P n P n P

7 1.00 5 1.00 7 1.00 5 1.00

6 .97 4 .94 6 .96 4 .93

5 .93 3 .86 5 .92 3 .84

4 .88 2 .73 4 .86 2 .70

3 .80 1 .51 3 .77 1 .47

2 .68 2 .64

1 .47 1 .43

106. We shall now apply these methods to the reduction

of the transit observations in § 102.

We shall assume A^^ = + 14'" 36^5. The values of

^^, bB, (6j^ — 6q) so, and a are obtained as before, and we

shall use their values tabulated in § 102. To compute the

terms - 0*.021 cos
(f>
C and ^;„(7, let - 0\021 cos (l>-i-i^= c".

Then
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c" = - 0*.015 + O'.OOS = - 0».012, for clamp west,

c" = - .015 - .003 = - .018, for clamp east,

c" = - .015 - 3 .827 = - 3 .842, for star (11).

The products e"O are given in the table below. The

value of d is found for each star by (253). The column

Vp is taken from the table for the large instruments ; but

for star (11), which is incomplete, the square root of the

weight is found from pP.

Star c"C d Vp

' (2) + 0^.05 + 1«.66 0.43

(3) - .01 - .05 .99

(4) - .01 - .11 .93

(5) - .01 + .13 1.00

(6) - .03 - .98 .54

(9) - .03 + .03 .84

(10) - .02 + .18 1.00

(11) -3.84 + .33 .97

(12) - .03 + .02 .79

(14) - .02 + .45 .99

(15) - .09 - .47 .34

Substituting the values of A, C, d and Vp in (255),

being careful to change the sign of the c term for clamp

east, we have the weighted observation equations

+ 1.462 a - 1.640 c + 0.43 x + 0.714 = 0,

+ .383 + 1.061 + .99 - .049 = 0,

+ .166 + 1.116 + .93 - .102 = 0,

+ .587 + 1.007 + 1.00 + .1.30 = 0,

- .731 + 1.574 + .54 - .529 = 0,

- .134 - 1.267 + .84 + .025 = 0,

+ .472 - 1.036 + 1.00 + .180 = 0,

+ .623 - .971 + .97 + .320 = 0,

- .282 -1.354 + .79 + .016 = 0,

+ .962 - 1.067 + .99 + .445 = 0,

— .977 - 1.696 + .34 — .160 = 0.

(258)
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The normal equations formed from these are

+ 5.780 a - 2.278 c + 2.714 x + 2.331 = 0,
]

- 2.278 + 18.020 - 2.505 - 2.807 = 0, I (259)

+ 2.714 - 2.505 +7.689 + 0.918 = 0. J

Their solution gives

a = - 0».383, c = + 0».115, x = + 0*.053

;

and therefore

A^ = A^o + ^ = + 14" 36«.5 + 0'.053 = + 14'» 36».553.

The weights of the quantities just determined are

Pa = 4.71, pc = 16.80, p^ = 6.29.

Substituting the values of a, e and x in (258), we obtain

the residuals Vpv,

- 0.012, - .021, + .011, + .074, - .039, - .024, - .067, + .021, + .010, + .007, + .001.

The sum of the squares of these is Ipvv = 0.0134. The
probable error r^ of an observation of weight unity is

given by

'^^i^-^^^VI^i' (260)

where m is the number of observation equations, and q is

the number of unknown quantities. In this case m = 11

and ^ = 3. Therefore r^ = ± 0^028.

The probable errors of the unknowns are given by

=^. (261)

r, = ± O-.Oll,

r - 1

Vpa
To = -^, r^

Therefore

ra = ±0».013, r<, = ± 0».007,

and
a -= - 0*.383 ± 0'.013,

c == + 0M15±0'.007,

Ae== + 14» 36'.553 ± O'.Oll.
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COKRECTION FOR FLEXURE

107. In the broken or prismatic transit instrument

(§ 90), a correction for flexure due to the bending of the

axis must be applied. The effect of- the flexure is to

change unequally the positions of the eyepiece and objec-

tive, which is the same as changing the inclination of the

axis. It can therefore be allowed for by changing the

measured inclination 6, using

h -\-f for clamp west,

h —f for clamp east,

/ befng the coefiicient of flexure, and the eyepiece being

on the clamp end of the axis.

It requires special apparatus to determine / directly, so

that unless its value for a particular instrument has been

well determined, it is best to reduce all the transit obser-

vations by the method of least squares, inserting another

unknown quantity/, thus:

Vp{aA ±fB ±cC + x + d) = Q. (262)

PERSONAL EQUATION

108. It generally occurs that two observers differ appre-

ciably in their estimates of the time of transit of a star

over a wire. Some observers acquire the habit of noting

a transit too early, while others note it too late. To illus-

trate, if a star actually transits at 9*.5, one observer may
note it systematically at 9*.7, whereas another may note

it systematically at 9*.2. An observer's absolute personal

equation is the quantity which must be applied to his

observed time of transit to produce the actual time of

transit. The relative personal equation of two observers

is the quantity which must be applied to the time of

transit noted by one observer to produce the time noted

by the other.

The personal equation arises from the observers' habits of
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observation, and under uniform conditions may be regarded

as sensibly constant for short periods of time. The relative

personal equation of two most skilful observers, Bessel

and Struve, was zero in 1814, but in 1821 it had increased

to 0\8 and in 1823 to 1*.0. An observer's absolute per-

sonal equation will depend very considerably upon the

circumstances under which he observes. It will in general

be different for observations made with a chronograph

and for those made by the eye and ear method ; for those

made with a clock beating seconds and with a chronome-

ter beating half-seconds ; for large and for small instru-

ments ; for equatorial and for circumpolar stars ; for bright

and for faint stars ; for stars and for the moon's edge ; for

different positions of the observer's body ; for the observer's

different degrees of fatigue ; and for other variable cir-

cumstances.

It is seldom that an observer's absolute personal equa-

tion exerts an injurious effect upon results obtained in

completed form from his own observations. But when

results obtained by two observers are to be compared or

combined, it is often essential that their personal equation

be eliminated.

The relative personal equation of two observers A and B
may be determined by one of many methods.

(a) Let A observe the transit of a star over the first three

or four threads of a transit instrument, and B its transit

over the remaining threads. For a second star let the

observers alternate, B observing the transits over the first

threads, and A over the last threads. When twenty-five

or more stars have been observed, let the observations of

each be reduced to the corresponding times of transit over

the middle wire, by equation (226). The difference of

times thus obtained for the two observers will be their

relative personal equation. The objection to this method

is that the observers are liable to be unduly hurried in

exchanging positions at the eyepiece.
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(5) Let A observe a star's transit over all the threads as

usual. Let a second star's transit be observed by B as

usual. In this manner let the observers alternate until

each has observed a long and well selected list of stars for

determining the clock correction. Let each reduce his

observations as usual. The difference of their clock cor-

rections will be their relative personal equation.

(c) Various personal equation machines have been de-

vised for measuring personal equation. In these an artifi-

cial star is made to cross a field of view arranged with a

reticle just as in the transit instrument, and the observer

notef the times of transit in the usual manner. The
actual times of transit are recorded automatically by an

electrical device. The difference of the times determined

in the two ways is the observer's absolute equation, pro-

vided the machine has no personal equation in making its

automatic record. At any rate, the difference of the

results thus obtained for two observers is their relative

personal equation.

The original programs of observation should always

be arranged, if possible, with reference to the direct elimi-

nation of the personal equation. For example, in the case

of longitude determinations, the personal equation of the

observers is eliminated by their exchanging places when
the program of observations is half completed; and

similarly in other cases.

DETERMINATION OF GEOGRAPHICAL LONGITUDE

109. The accurate determination of the difference of

longitude of two places requires the accurate determination

of the time at each place and a method of comparing these

times. One of the following methods of comparison is

generally employed.

(a) Bi/ Transportation of Chronometers. Let the eastern

place be ^, the western place W, and the difference of their
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longitude, L. Determine the correction A^^ and the rate

hd of a chronometer at E^ at the chronometer time 6^.

Carry the chronometer to TF, and there determine its cor-

rection ^Oy, at the chronometer time 6^,. Then

$„ + A^„ = correct time at W at chronometer time Oy, ;

d„ 4- A^g + 8^(^„ - de) = correct time at E at chronometer time 0„.

Their difference is

L = ^ee + 80 (0^ - Oe) - A^„. (263)

The rate of the chronometer during transportation gen-

erally differs from its rate when at rest. The change may
be eliminated largely by transporting it in both directions

between E and W. The rate is also a function of the tem-

perature and the lubrication of the pivots. It has been

found that the rate m at any temperature i? can be repre-

sented by the formula

m = ;Ho + A; (i? - i?o) - ^% (264)

in which i?^ is the temperature of best compensation, Mq

the rate at that temperature with t — 0, t the time meas-

ured from that instant, k the temperature coefficient and

k' the lubrication coefficient. By determining Wq, k, ^^

and k' for each chronometer, keeping a record of the tem-

perature during transportation, and transporting several

chronometei"S in both directions, the method yields good

results. It should never be emploj^ed, however, except

when the telegraphic method is impracticable.

(5) Bi/ the Electric Telegraph. To illustrate the sim-

plest application of the method first, let the observers at

E and W determine their chronometer corrections. Next,

let the observer at E tap the signal key of the telegraph

line joining E and W simultaneously with the beats of

his chronometer, and let the observer at JV note on his

chronometer the times of receiving these signals. In the
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same way let the observer at W send return signals to

the observer at U. Let

6e = correct time at E of sending signal,

0„ = correct time at Woi receiving signal,

6J = correct time at FT of sending return signal,

$J = correct time at E of receiving return signal,

fx = the transmission time.

Then

Therefore

0» + fx.
— L = 6„,

e,>-fi-L = dj.
'

L = \(fi, + 6.')-\{6^ + 6j), (265)

i>.
= iie„-ej)-\{de-ej). (266)

There are several small errors affecting the value of L
obtained by this method of comparison, viz.

:

1st. The personal equation of the observers in sending

and receiving the signals ;

2d. The time required to close the circuit after the

finger touches the key, and to move the armature of the

receiving magnet through the space in which it plays—
called the armature time.

3d. The personal equation of the observers in determin-

ing the chronometer corrections, and errors in the right

ascensions of the stars employed.

These must be eliminated as far as possible in refined

determinations. This is best done by a modification of

the above method, called the method of star signals. One

clock or chronometer, provided with a break-circuit, is

placed in the circuit of the telegraph line, and at each

station a chronograph and the signal key of a transit

instrument are placed in the same circuit. The same list

of stars is observed at both places, thereby eliminating

errors in the right ascensions. When the first star crosses

the wires of the transit instrument at E^ the observer

makes the records on both chronographs by tapping his
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key. When the same star reaches the meridian of W the

observer there makes a similar record on both chronographs^

and similarly for the other stars. The observers must also

make suitable observations for determining the constants

of their instruments and the rate of the clock. Let

$e — the clock time when a star is on the meridian of E, from the

chronograph at E,

Bj = the same, taken from the chronograph at W,

6,0 = the clock time when the same star is on the meridian of W, taken

from the chronograph at E,

$J — the same, taken from the chronograph at W,

e = the absolute personal equation of the observer at E,

w = the absolute personal equation of the observer at TF,

W = the correction for rate in the interval $„ — $».

Then
e„ +89 + W - fi- L = Oe +e,

$j + 8e + w + iJi-L = ee' + e.

Therefore
Z = H^«. + OJ) -l(Oe + Oe') +8$ + w-e,

which we may write

L = L^ + w-e. (267)

If now the observers exchange places and repeat the

observations we shall obtain

L = L2 + e-w, (268)

provided their relative personal equation has not changed.

Therefore,
L = HLr + L,). (269)

Great care must he taken in arranging the circuits to

insure that the electric constants are the same at both

stations. This condition can be secured by means of a

rheostat and galvanometer placed in the circuit at each

station. If there is any doubt as to the equality of the

constants, any difference in the armature times at the two

stations may be eliminated by exchanging the electrical
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apparatus, along with the observers, at the middle of the

series.

If the above conditions are realized, the resulting longi-

tude will be free from all errors except the accidental

errors of observation.

The method of star signals requires the exclusive use of

the connecting telegraph line for several hours on each

observing night. If such an arrangement is impossible,

the observers must adopt some practicable method. Thus,

if the telegraph line can be used only a few minutes each

night, a set of adopted signals can be sent back and forth

in suet a way as to be recorded on both chronographs.

The time at the two stations having been accurately deter-

mined, from a carefully selected list of stars, the results

obtained by this method are nearly as accurate as those

obtained by star signals.

The clock or chronometer should never be placed

directly in the circuit joining the two stations, as the cur-

rent would generally be strong enough either to change

its rate or to injure its mechanism. It should be placed

in a local circuit of its own, with a current just sufficient

to work a relay connecting it with the main circuit.

If so desired, a clock or chronometer may be connected

with the circuit at each station, so that the beats of both

will be recorded on both chronographs.

It is the custom of the Coast Survey to determine longi-

tudes from observations and signals on ten nights, the

observers exchanging places at the middle of the series.

(c) By the Heliotrope. In mountainous regions the

telegraphic method of determining longitudes is usually

unavailable. The difference of longitude of two points in

sight of each other can be determined from heliographic

signals. The necessity for sending signals in both direc-

tions and for the observers exchanging stations will be

obvious. The equations involved will be similar to those

in method (6).
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((^) By Moon Culminations. The right ascension of the

moon is tabulated in the Ephemeris for every hour of

Greenwich mean time, whence its value may be computed

for any instant of time at a place whose longitude is known.

Conversely, if its right ascension is observed at a given

place, the Greenwich time corresponding to this right

ascension can be taken from the Ephemeris. The Green-

wich time minus the time of observation is the longitude

of the observer west of Greenwich.

The right ascension is best observed with a transit

instrument in the meridian. An observing list, containing

two azimuth stars and four or more stars whose declina-

tions are equal to that of the moon as nearly as possible,

is arranged so that the moon is near the middle of the list.

The transits of the stars and the moon's bright limb are

observed in the usual way. From the star transits, the

constants of the instrument and the chronometer correction

at the instant of observing the moon are obtained, as before.

The distance of the moon's bright limb east of the meridian

at the time of observation, ^„„ is given very nearly by

[the neglected effect of parallax is small when the instru-

ment is nearly in the meridian]

T = aA +bB + c'C.
.

(270)

The values of A, B and C must be computed for the

apparent declination; that is, the geocentric declination

minus the parallax, given by (61).

T is the time required for a star to pass through the

angle r. If Aa is the increase of the moon's right ascen-

sion in one mean minute (given in the Ephemeris), the

mean time required by the moon to describe the angle

r. is T — :— The sidereal interval is therefore
60 — Aa

60.164 , ^ ^ 60.164
r -TT—TTr: Let iHf=
60.164 - Aa 60.164 - Aa
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The values of logM can be taken from the following

table

:

Aa logilf Aa logi¥ Aa logM Aa logilf

1'.65 0.0121 P95 0.0143 2».25 0.0166 2'.55 0.0188

1.70 .0124 2.00 .0147 2.30 .0169 2.60 .0192

1.75 .0128 2.05 .0151 2.35 .0173 2.65 .0196

1.80 .0132 2.10 .0154 2.40 .0177 2.70 .0199

1.85 .0136 2.15 .0158 2.45 .0181 2.75 .0203

1.90 .0139 2.20 .0162 2.50 .0184 2.80 .0207

The * sidereal time of semidiameter passing meridian "

is tabulated in the American Ephemeris, pp. 385-392. Let

S represent it. The right ascension of the moon's center

when on the meridian is equal to the observer's sidereal

time 0, and is given bj

a = 6 = er^ + ^e + TM± s, (271)

the upper or lower sign being used according as the west

or east limb is observed.

Example. The moon's east limb and seven stars were

observed with the transit instrument of the Detroit

Observatory, Saturday, 1891 May 23, to determine the

longitude.

The star transits gave

A^ = + 15'" 34».93 at chronometer time 16* IS",

a = - 0«.360,

6 = + 0.674,

c' = + 0.100.

The mean of the observed times of transit of the moon's

second limb over the five wires was

On, = 16* 12'» 45'.60.

The moon's geocentric declination = — 22° 8',

Parallax = 51

,

The moon's apparent declination = — 22 .54 .
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Therefore, A=+ 0.985, B = + 0.455, (7= + 1.085 ; and
T = 0*.04 = tM. From the Ephemeris, p. 388, >S'= 1"* 9*.90.

Therefore

a = ^ = 16» 12'» 45'.60 + lo"* 31«.93 + 0«.04 - !•» 9'.90 = 16» 27™ lO'.e?.

From the Ephemeris, p. 83, the right ascension at Green-

wich mean time 18'» was 16^^ 27'" 20*.32. The difference,

9*.65, corresponds to a difference in time of about 4™. The
average increase of right ascension per minute during this

interval was 2*.3058. The exact value of the interval

before 18" is 9.65 -> 2.3058 = 4'».185 = 4'" IIMO. The
Greenwich mean time corresponding to the observed value

of a was therefore 17" 55™ 48*.90. The equivalent sidereal

time was 22" 2"* 0*.38, and the longitude of the observer

was
L = 22» 2" 0'.38 - 16» 27"* 10*.67 = 5* Si" 49'.71.

Longitudes obtained by this method can be regarded

only as approximately correct, for two reasons

:

1st. An error in the observed right ascension introduces

an error -— times as great in the resulting longitude

;

2d. The tables of the moon's motion are imperfect, and

the tabulated right ascensions may be slightly in error.

This would introduce an error about — as great in a

resulting longitude. The above example should be

reduced anew when the corrections to the moon's right

ascensions for 1891 are published.



CHAPTER VIII

THE ZENITH TELESCOPE

110. When a sensitive spirit level at right angles to the

rotation axis, and a micrometer with wire moving parallel

to the axis are added to the transit instrument, it becomes

a zenith telescope. The level is called a zenith level.

The transit instrument and the zenith telescope are fre-

quently combined in this way, as shown in Fig. 20.

DETERMESTATION OF GEOGRAPHICAL LATITUDE

111. The zenith telescope is specially adapted to deter-

mining the latitude when great accuracy is required. The

method employed is known as Talcott's method. It con-

sists in measuring the difference of the zenith distances of

two stars, one of which culminates south of the zenith and

the other north of the zenith. The difference of their

zenith distances should not exceed half the diameter of the

field of view, to avoid observing near the edge of the field.

The difference of their right ascensions should not exceed

15"* or 20'", to avoid any change in the constants of the

instrument between the two halves of the observation

;

nor should the difference be less than 2"* or 3"*, to avoid

undue haste. The zenith distances should never exceed

35°, to avoid uncertainty in the refractions.

To prepare the observing list, an approximate value of

the latitude must be known. This can be found from a

map, or from a sextant meridian double altitude (§§ 84-87).

167
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Letting the primes refer to the southern star and the

seconds to the northern star, we have

Therefore

B' =<l>- z', (272)

8" = «^ + z". (273)

8' + 8" = 2 (^ + (z" - z'), (274)

which is the condition that the two stars of the pair must
fulfill. Thus, in latitude 42° 17', and with an instrument

whose field of view is 40' in diameter, we must have two
stars such that B' + 8" is greater than 84° 14' and less than

84° 54'. A pair is given below which meets these require-

ments. The " Setting " is the mean of the zenith distances.

The assumed latitude is 42° 17'.

Star Mag. Apparent a 5 z Setting

K UrscE Majoris

38 Lyncis

3.3

4.1

8*56™12»

9 12 5

+ 47° 35'

37 16

N. 5° 18'

S. 5 1

N. 5° 9'

S. 5 9

Care must be taken, in forming the observing list, to

employ only those stars whose declinations are well deter-

mined.

To observe the first star, the circle to which the zenith

level is usually attached is made to read the " Setting,"

the telescope is rotated until the bubble moves to the

middle of the tube, and the micrometer wire is moved to

the part of the eyepiece where it is known the star will

pass. Thus, in the pair above, it is known that the first

star will cross 9' [ = 5° 18' - 5° 9'] above the center. When
the first star culminates, or within a few seconds of culmi-

nation, bisect the star by the micrometer wire, and read the

zenith level and the micrometer. Reverse the instrument

without jarring it, bring the bubble to the center of the

level again, and observe the second star in the same way
as the first. It is sometimes preferable not to clamp the
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instrument during the observations. Care must he taken

not to change the position of the level with respect to the line

of sight during the progress of an observation ; the angle

between the two must be preserved.

Let m^ be the micrometer reading on any point of the

field assumed as the micrometer zero ; z^ the apparent

zenith distance corresponding to m^ when the level bubble

is at the center of the tube ; m', m" the micrometer read-

ings on the two stars, the readings being supposed to

increase with the zenith distance ; R the value of a revolu-

tion? of the micrometer screw; h\ h" the level constants

for the two stars, plus when the north end is high ; r', r"

the refractions for the two stars. Then the true zenith

distance of the southern star is given by

z'=z^+ (m'-mQ)R + h' + r'

;

and of the northern star

z" = Zo + (m" - Wo) ^ - '-'" + '"•

Substituting these in (274) and solving for ^, we obtain

<^ = 1 (8' + 8") + K'l' - m")R + K^' + *") +i(r'- '•")• C-^^S)

If the micrometer readings decrease for increasing zenith

distances the sign of the second term is minus.

In case the zero of the level scale is at the center of the

tube,

^ (//+ //') = i l(n'+ n") - (s'+ si)}d, (276)

in which n', n", «', s" are the level readings for the two

stars, and d is the value of a division of the level.

In case the zero of the level scale is at one end of the

tube,

i (h'+h") = i [± (n'+ s') T (n"+ .s")] (1, (277)

the upper sign being used when n' is greater than s', the

lower when n' is less than s'.
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The refraction correction is small, and can be computed

differentially by the formula

(278)i(^r'-r")=i'^(z'~z"),
dz

dr
in which (z' — z") is expressed in minutes of arc, and— is

dz

the rate of change of refraction in seconds of arc per

minute of change in zenith distance. Differentiating (97),

we obtain

r = 58" tan z,

— =:58"sec2zsinl',
dz

(279)

the factor, sin 1', being introduced to make the two mem-
bers homogeneous. Therefore, from (278),

J (r' - ,•") = 29" sec2 z sin 1' (2' - 2"). (280)

The values of ^ (r' — r") can be taken from the following

table, for the mean zenith distance z of the stars. Since

the micrometer term of the formula (275) gives the approx-

imate value of ^ (z' — z"), this is used as the argument

of the table, rather than z' — z". The sign of this correc-

tion is the same as that of the micrometer correction.

Values of \ (f — r")

z' - z"

2
2 = 0° 2 = 10° 2 = 20° 2 = 25° 2 = 30° 2 = 35°

0' ".00 ".00 ".00 ".00 ".00 ".00

1 .02 .02 .02 .02 .02 .02

2 .03 .03 .04 .04 .04 .05

3 .05 .05 .06 .06 .07 .08

4 .07 .07 > .08 .08 .09 .10

5 .08 .09 .10 .10 .11 .13

6 .10 .10 .11 .12 .13 .15

7 .12 .12 .13 .14 .15 .18

8 .13 .14 .15 .16 .18 .21

9 .15 .16 .17 .18 .20 .23

10 .17 .18 .19 .21 .23 .26

11 .18 .19 .21 .23 .25 .28

12 .20 .21 .23 .25 .27 .31
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In counection with the subject of refraction, a word

should be said in regard to securing good observing con-

ditions. The observing room should be thrown open for

thorough ventilation an hour or more before the observa-

tions begin. The observing room should assume, as nearly

as possible, the temperature of the outside air. The line

of sight should not pass within the field of influence of

a neighboring chimney, or other disturbing factor. Re-

fined observations should not be attempted when the star

images are very unsteady.

If for any reason the star cannot be observed at the

instant of culmination, the bisection may be made when
the star is at some distance from the center of the field,

the time of observation being noted. The polar distance

of every star observed in this way will be too small. A
slight correction, called the reduction to the meridian,

must be applied. Let x represent it; and let t be the

distance of the star from the meridian when it was ob-

served, in seconds of time.

In the right triangle formed by the meridian, the star's

declination circle, and the micrometer wire projected on

the sphere, we have the side 90° — 5 and the angle t at the

pole, to find the side 90° — (h ±x). We can write

cot (8 ± x) = cos I cot 8.

Expanding and solving for tan a;,

. _ (1
— cos sin 8 cos 8

td^ri X — i —;—
—-^^ -. *

sm^ d + cos t cos^

We can put the denominator equal to unity without sensi-

ble error, since t is always small. Therefore

tanx = ± 2sin2j«sin8cos8 = ±^sin28 • 2sin2^<;

or

sin 1"

'

x = ±sm2 8^-^P^-, (281)

the lower sign being used for stars observed near lower

culmination.
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The correction to the observed latitude will always be ^ x.

If both stars of the pair are observed off the meridian, there

will be two such terms to apply.

The values of x are tabulated below with the arguments

8 and t.

Values of x

6» 10»

".00

15«

".00

20»

".00

25'

".00

30»

".00

35»

".00

40»

".00

45

".00

50» 65» 60» /5
0° ".00 ".00 ".00 ".00 90°

5 .00 .00 .01 .02 .03 .04 .06 .08 .10 .12 .14 .17 85

10 .00 .01 .02 .04 .06 .08 .11 .15 .19 .23 .28 .34 80

15 .00 .01 .03 .05 .09 .12 .17 .22 .28 .34 .41 .49 75

20 .00 .02 .04 .07 .11 .16 .22 .28 .36 .44 .53 .63 70

25 .01 .02 .05 .08 .13 .19 .26 .34 .42 .52 .63 .75 65

30 .01 .02 .05 .09 .15 .21 .29 .38 .48 .59 .71 .85 60

35 .01 .03 .06 .10 .16 .23 .31 .41 .52 .64 .77 .92 55

40 .01 .03 .06 .11 .17 .24 .33 .43 .54 .67 .81 .97 50

45 .01 .03 .06 .11 .17 .25 .33 .44 .55 .68 .82 .98 45

112. The adjustments for the transit instrument, § 100,

apply equally well, for the most part, to the zenith tele-

scope. Special forms of the instrument, however, will call

for special methods, which the intelligent observer will

easily devise.

The micrometer wire must be made perpendicular to the

meridian. If this adjustment is perfect, an equatorial star

will travel on the wire throughout its entire length.

113. Example. The following observations were made

with the zenith telescope of the Detroit Observatory, Mon-
day, 1891 March 16.

Star Chronometer Micrometer
Level

n s

K Ursce Majoris

38 Lyncis

8» 40" 36"

8 56 10

13.647

37.359

8.9

39.6

35.7

12.4

Required the latitude.
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The chronometer correction was + 15"* 47*. The value

of one revolution of the micrometer screw is i2= 45".042.

The value of one division of the level is d = 2".74. The
mean places of the stars are given in the Jahrbueh, p. 180.

Their apparent places are found by the methods of § 55

to be
a" = 8" 56™ 12% 8" = + 47° 35' 21".33,

a' = 9 12 5, 8' = + 37 15 53 .05.

Therefore

i (8' + 8") = 42° 25' 37".19.

The micrometer readings decreased with increasing

zenith distances. Therefore

-i(m' - m")R=- 11.856 i? = - 8' 54".02.

The zero of the level was at one end ; therefore, by (277),

\ (b' + b") = \ (52.0 - 44.6) fZ = + 5".07.

The half difference of the zenith distances is 8' 54", and

the mean zenith distance is 2 = 5° 9'. Therefore, from the

table for differential refraction,

1 (/ _ ^it^ ^ _ 0//.16,

The first star was observed at an hour angle t = + IV;

therefore, from the table, the value oi ^x for the northern

star is

ix"= + 0".02.

The second star was observed at the hour angle t = — 8^;

therefore the value oi ^x for the southern star is

|a;'= + 0".01.

Combining the terms of (275) and the reductions to the

meridian, we obtain

<f>
= 42° 16' 48".ll.

[The known value of the latitude is about 42° 16' 47 ".3.]

114. In very accurate determinations of the latitude, a

number of pairs of stars should be observed several times
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in this way, and the results combined by the method of

least squares. If we let 0^, Mq and d^ be very nearly the

true values of
<f),
R and c?, and let A^, AM and Ad be

slight corrections to
<f>Q,

Hq and c?q, each observation fur-

nishes an equation of the form

<f>, + Acf> = 1(8' + 8") + l(m' ~ m") (R, + AR)

+ i[±(n' + s')T(n" + s")Xdo + Ac?) + K'-' - r") + ^x' + ^x".

Let

^ = <^o - K8' + 8") - K»i' - "i") ^0

-il±Oi'.+ s')T(n" + s")]d,-^(r'-r")-^x -\x". (282)

Then

6.<^ - \{mi - m") AR - l\_±{n' + s')Tin'< + si>)']M + k = 0, (283)

is an observation equation for determining A^, A 72 and Ad.

Thus, in the example above, if we assume ^^=42° 16' 47".0,

R^ = 45".040, d^ = 2".70, we find A; = - 1".06, and (283)

DGCOIUGS
A<)!> + 11.856 Ai2 - 1.85 Arf - 1.06 = 0. (284)

Forming the corresponding equations for the other pairs

observed and solving by the method of least squares, the

most probable values of A^, AR and Ad, and therefore

of ^, R and d, are obtained.

However, it has recently been shown that the latitude

of a place varies appreciably, sometimes in the course of a

few weeks ; and latitude observations, to be combined by

any direct method, must be made inside of a few days and

the result be taken as the latitude at the mean of the

observation times.
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THE MERIDIAN CIRCLE

115. The Meridian Circle consists essentially of a transit

instrument with a graduated circle attached, at right angles

to, an/i concentric with, the rotation axis. The graduated

circle rotates in common with the telescope, and is read by

reading microscopes firmly attached to one of the support-

ing piers of the instrument. The best instruments are

provided with two graduated circles. One of these circles

usually remains fixed on the axis for an indefinite time;

whereas the other is movable, and many observers are

accustomed to rotate it through any desired angle [and

clamp it firmly to the axis] from time to time.

An excellent form of the meridian circle is illustrated,

with many details omitted, in Fig. 25. Two massive

supporting piers extend down to solid earth or rock foun-

dation ; and, as in the case of all telescope piers, are com-

pletely isolated from the floor and building. The circular

drum on each pier carries the four long slender reading

microscopes for reading the graduated circle, on which

they are focused. The pivots rest in V's attached to the

inner head plates of the drums. The counterbalance levers

are shown on the tops of the drums. A lifting arm de-

scends from the inner end of each lever and rests, with

roller bearings, on the under side of the axis. The chain

descending from the outer end of the lever, through a hole

in the pier, carries a counterweight. Nearly the whole

weight of the instrument is supported in this manner, leav-

ing only a small residual weight to be borne by the V's.

175



Fig. 25
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The level is in position on the instrument, suspended from

the pivots. It is visible immediately under the circles.

The eyepiece is supplied with the usual number of verti-

cal threads, and with vertical and horizontal micrometer

wires. A basin of mercury, not visible in the cut, is

mounted below the level of the floor, immediately under

the center of the instrument, on a pier isolated from the

floor. The small telescope showing just below the ob-

jective of the lower left reading microscope is the "setting

telescope," used for setting the instrument at any desired

circle reading. The auxiliary apparatus shown is, the

observing chair in the foreground, the adjustable mercury

basin for reflection observations, and the reversing carriage

in the background. The field of view and the wires are

illuminated by light from a lamp at the side of the room,

shining through the hollow axis, as in the case of the

transit instrument. A system of small mirrors receives

light from the same source and reflects it where it is needed

for reading the circles and setting the telescope. The
graduated circles are about two feet in diameter, and the

graduations are two minutes of arc apart. The micrometer

head of each microscope is divided into 60 parts, each

division corresponding to 1". The divisions may be sub-

divided, by estimation, into 10 parts, each part being 0".l.

The meridian circle is used principally to determine the

accurate positions of the heavenly bodies on the celestial

sphere; i.e., their right ascensions and declinations. It is

further adapted to determining the time and the geo-

graphical longitude by the methods of Chapter VII, and

to determining the geographical latitude.

116. The determination of right ascensions. The princi-

ples involved in this problem have been treated in Chap-

ter VII. The stars whose right ascensions are to be

determined (which we shall call undetermined stars),

are placed in an observing program which includes a
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considerable number of stars whose positions are accurately

known (which we shall call standard stars), and which are

suitable for determining the azimuth of the instrument,

and the time. The transits of all the stars, both unde-

termined and standard, are observed, the constants of the

instrument are determined, and all the observations are

reduced in the usual manner. The clock correction is

determined from the standard stars, as usual. The right

ascensions of the undetermined stars are found by means

of equation (233), which may be written

a = 6„ + i^d + aA+hB + c'C + (0„ - Oo)8e. (285)

In forming the observing program, the undetermined

stare should be preceded, accompanied and followed by

standard stars. Likewise, the declinations of the standard

stars should be nearly the same as, or at least should in-

clude, the declinations of the undetermined stars, thereby

eliminating largely the uncertainties or progressive changes

in the instrumental constants.

Example. In the example of § 102, let it be assumed that

the star (3) S Leonis and star (10) /8 Leonis are undeter-

mined stars, and that the remaining nine stars of the list

are standard stars. Required the right ascensions of stars

(3) and (10).

The value of the chronometer correction from the nine

standard stars is

A^ = + Id" 36'.54.

The right ascension computations may now be tabulated,

as below.
Star (3) 8 Leonis Star (10) P Leonis

On. lO^SS-'iS'.Oi 11*28"•54'.44

A0 + 14 36.54 + 14 36.54

aA — 0.15 — 0.16

IB + 0.15 + 0.06

c'C + 0.11 — 0.13

iO^--6o)^- 0.07 + 0.02

11 8 19.62 11 43 30.77
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117. Declinations and the latitude are determined from

observations which involve readings of the graduated circle.

The method of reading the circle by reading microscopes,

and correcting for error of runs, is given in § 58. In

modern instruments, provided with eyepiece micrometers

moving in declination, the error of runs may and should

be practically eliminated by a suitable method of observing.

To illustrate, if it is the observer's custom to read each

microscope on only one graduation, the telescope should

be directed, by means of the setting telescope, so that the

graduation to be set on will always fall in the same posi-

tion with reference to the zero of the microscope for all

the observations of a series. Again, if it is the observer's

custom to read each microscope on two adjacent gradua-

tions, these should always fall in the same positions with

reference to the micrometer zero, the two graduations

being, preferably, on opposite sides of the zero. Knowing
the approximate position of the star to be observed, its

"setting"— usually zenith distance— can be computed to

the nearest even minute, and the instrument set for that

reading. As the star crosses the middle thread in the eye-

piece, its distance from the zero position of the micrometer

wire is measured with the declination micrometer. The
microscope readings on the graduations are then secured,

and later the declination micrometer is read.

In reading the circle it is customary to take the degrees

d^nA even minutes from the circle as seen in one of the

microscopes, and the seconds and fractions from the mean
of the four microscope readings. The reading thus

obtained must be corrected for runs, for flexure, for the

distance of the declination micrometer wire from its zero

position, and possibly for errors of the graduations.

118. The zero reading of the micrometer may be obtained

from nadir observations [§97, (<:?)]. Let the observing

telescope be directed vertically downward to the mercurial
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basin. Obtain the micrometer readings when the wire is

on each side of its reflected image, at minute and equal

distances. The mean of the two readings is the reading

for coincidence of the wire and its image, and is the zero

reading of the micrometer. Let the microscopes be read for

this position of the instrument, and corrected for runs and

graduation error. The result is the nadir reading of the

circle. The nadir reading plus 180° is the zenith reading.

Many of the older forms of meridian circles are not pro-

vided with declination micrometers, but have two hori-

zontal fixed wires marking the center of the field, as shown

in Fig. 19. In this case, when a star is crossing the middle

transit thread, the entire instrument is moved by a slow

motion screw until the star travels midway between the

two horizontal wires. The microscope readings may thus

have any value up to 2', and the correction for runs must

be carefully determined. Again, some instruments have

a single horizontal fixed wire.

119. Determination of the value of one revolution of the

micrometer screw. The method of § 61, (a), is applicable,

but a better method is the following : Direct the observ-

ing telescope to one of the collimators (described in § 97),

so that the image of the horizontal wire of the collimator

falls about half a radius above the center of the field.

Determine the micrometer reading when the micrometer

wire is coincident with the image of the collimator wire,

and read the circle. Rotate the instrument so that the

collimator image moves to the opposite side of the field

of view, and again determine the corresponding micrometer

and circle readings. The difference of the circle readings

divided by the difference of the micrometer readings is

the value of a revolution of the screw. If a movable

circle is available, several different arcs may be used for

this purpose, thereby eliminating very largely the effect of

graduation errors.
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120. Eccentricity of the circle. As explained in § 59,

the effect of eccentric mounting of the circle is eliminated

by the use of two or more equidistant verniers or reading

microscopes.

121. Flexure. When the instrument is rotated from one

position to another, the form of the observing telescope

(and sometimes also the form of the graduated circle), is

appreciably changed under the action of gravity. The

bending of the telescope tube will do no harm provided

the objective and the eyepiece are displaced the same

amount, but a difference in their displacements changes

the direction of the line of sight with reference to the

circle graduations. This effect is called the flexure.

In most modern instruments the flexure is very small,

since the observing telescope is symmetrical with refer-

ence to the rotation axis, and the mechanism at the eye

end is made of the same weight as the objective and its

cell. They are further designed so that the objective and

eyepiece mechanism may be interchanged on the telescope

tube. If we combine two observations of the same body,

one made before interchanging the objective and ocular,

and the other after interchanging them (the interchange

involving at the same time a rotation of the telescope tube

through 180°), the result will be free from flexure, theo-

retically at least.

The two collimators furnish a simple method of measur-

ing the horizontal flexure, i.e., the flexure when the tele-

scope is in a horizontal position. Let the horizontal threads

of the collimators be brought into coincidence, as explained

in § 97, (e). The two threads then represent two infi-

nitely distant lines whose angular distance apart, measured

through the zenith, is exactly 180°. Measure this distance

.in the usual manner. If there is no flexure, the difference

of the circle readings should be exactly 180°. If any

excess or deficiency exists, that excess or deficiency is
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twice the horizontal flexure, plus the accidental and un-

avoidable errors of the observation.

Example. Repsold Meridian Circle, Lick Observatory,

Saturday, 1898 June 11, the following observations were

made by R. H. Tucker for determining the horizontal

flexure. Circle east.

Circle Reading on South CoUimator .... 224° 56' 49".07

North Collimator set on South Collimator

Circle Reading on North Collimator .... 44 56 48 .64

North Collimator set on South Collimator

Circle Reading on North Collimator .... 44 56 48 .58

Circle Reading on South Collimator .... 224 56 48 .75

Mean Circle Reading, North 44 56 48 .61

Mean Circle Reading, South 224 56 48 .91

Difference, North-South 179 59 59 .70

The deficiency is 0".30 and the horizontal flexure, /, is

0".15. The sign of the flexure correction to the circle

readings is readily found. As the telescope was turned

from the south collimator through the zenith to the north

collimator, the readings increased from 224° through 360°

to 44°, and the measure of the angle is 0".30 too small.

The correction to the circle reading for a star south of the

zenith is minus, and for a star north of the zenith is plus.

If the instrument were reversed, circle west, the signs of

the corrections would be reversed.

The mean value of /, resulting from 23 determinations

by the sanae observer, extending through two years, is

0".065, but the value 0".l has been adopted, provisionally.

Since the gravitational moment of any given mass in

the telescope, with reference to the rotation axis, varies

with the sine of the zenith distance of the line of sight, the

general expression for the flexure is assumed to be

Flexure = /sin z, (286)

though it is not probable that the flexures in all instru-

ments can be represented by this law.
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The Older of observation followed in the above example

illustrates a general principle which should be taken into

account, whenever possible, in forming programs of ob-

servation with any instrument. The observations were

made in one order, and repeated in reverse order, thereby-

eliminating largely any possible progressive changes in the

apparatus.

122. Errors of graduation exist in all circles and affect

the angles measured by them. Whether these errors are

negligible, or must be taken into account, depends largely

upon' the degree of refinement exacted by the problem in

hand. In the case of small instruments constructed by

first-class makers, the errors of graduation will generally

be smaller than the least reading of the instrument, and

may be neglected. The circles provided by the best makers

for modern meridian instruments are nearly perfect. It is

seldom that one of the graduations is displaced as much as

1" from its theoretical position, or that the mean of four

graduations 90° apart is in error by as much as 0".5.

Nevertheless, it is necessary to investigate every such

circle to determine the degree of refinement which it will

impart to observations depending upon its readings, and to

secure data for eliminating eiTors arising from its imper-

fect graduation. The investigation of 10,800 graduations

on a circle taxes the resources of most long established

observatories so prohibitively that it is seldom or never

carried to a finish. After the investigation has extended

to all the graduations marking the degrees, or at the

most to those marking the 20' divisions, the nature and

magnitude of the systematic errors and the magnitude of

the accidental errors will have been revealed, and further

determinations may generally be confined to the gradua-

tions which are used with special frequency, e.g.^ the

graduations used in determining the nadir reading, or

those used with particular stars, or zones of stars.
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It will be seen from the above that the problem is one

for the professional astronomer and his assistants, rather

than for the student. A complete solution is therefore

not called for in this place, but an outline of one of the

best methods may be given.

Let us suppose that the instrument has a fixed and a

movable circle, each read by four microscopes 90° apart.

As an origin for the entire system of measures, let it be

assumed that the mean of the readings of the four micro-

scopes on the 0°, 90°, 180° and 270° lines is free from

graduation error, in both circles. If now the axis of the

instrument be rotated through a given angle, 30° for

example, and the circle reading be taken, the observed

angle will differ slightly from 30°, from several causes:

first, the unavoidable errors of observation, which may be

reduced materially by increasing the number of indepen-

dent observations ; second, progressive changes in the ap-

paratus, largely due to temperature variations, which may
be reduced materially by repeating the observations back-

wards ; third, differential flexure of the circle, which may
be eliminated, it is assumed, by rotating the instrument on

its axis through 180° and repeating the observations on

the same lines ; and fourth, the graduation errors of the

divisions used. These considerations suggest the principal

features of the program of observations.

Let it be required, first, to determine the division errors

of the, 45° points of both circles; i.e., the error for each

circle affecting the mean of the readings obtained from

the four microscopes on the points 45°, 135°, 225° and
315°. Place the 0° of the two circles in coincidence and

read the microscopes for both circles. To increase the

accuracy of the determination by increasing the number
of observations, and at the same time eliminate the circle

flexure, let these observations be repeated with the instru-

ment rotated through one, two, three and four quadrants.

Now let the 45° line of the movable circle be made coinci-
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dent with the 0° line of the fixed circle, and a series of

readings similar to the above be secured. Next let the 90°

division of the movable circle be made coincident with the

0° line of the fixed circle, and so on until a series has been

secured with each 45° division of the movable circle in

coincidence with the 0° of the fixed circle. In order to

eliminate progressive changes in the instrument, as far as

possible, let the above program of observations be re-

peated in reverse order. The data will then be at hand

for a thorough determination of the errors of the 45° divi-

sions of both circles. Each arc of 45° on one circle has

been' compared with each such arc on the other circle.

For example, the first 45° arc of the fixed circle has been

used to measure each of the eight 45° arcs on the movable

circle. The true sum of these eight arcs is 360°. If their

sum measured by the fixed-circle arc differs from 360° by

any quantity w, the relative division error of the mean
reading of the fixed-circle microscopes on the 45° lines is

I n. Similarly, the 45° division error for the movable

circle may be computed.

The division errors of the 15° readings of the two circles

may be obtained by subdividing and comparing the 45°

arcs just determined, or from the complete circles, as

before ; and so on for the 5°, 1° and other readings.

When a circle has been investigated, the zero of the

system may be changed arbitrarily by applying a constant

to all the division errors secured, either to make them all

of the same sign, or to make their algebraic sum zero.

The 1° readings of the fixed circle, and the 3° readings

of the movable circle of the Repsold instrument of the

Lick Observatory, were investigated by the above methods

by R. H. Tucker.* The average errors of the fixed and

* For further and fuller details, see articles by Professor Tucker in

Publications Astronomical Society of the Pacific, 1895, pp. 330-338, and

1896, pp. 270-272. Also an article by Professor Boss in The Astronomi-

cal Journal, 1896, Nos. 382, 383.
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movable circle readings were ± 0".18 and ± 0".15, re-

spectively. The following table contains the errors for the

9° readings, by way of illustration.

Beading Fixed Circle Movable Circle

0° + 0".18 + 0".10

9 + .12 + .14

18 -0 .23 + .04

27 -0 .04 + .37

36 -0 .52 -0 .34

45 -0 .34 + .03

54 + .02 -0 .18

63 + .11 -0 .07

72 -0 .22 -0 .14

81 + .16 + .08

90 + .18 + .10

In case the instrument has only one circle, its errors

may be determined by means of two extra microscopes,

placed 180° apart, in connection with the four regular

microscopes.*

It should be explained that many observers shift the

movable circle from time to time, so that the several

observations of any star will depend upon many different

graduations of the circle, thereby reducing the magnitude

of the division error affecting the mean result.

The flexure of the circles in modern instruments is so

smail that to apply a correction for it is generally more

objectionable than to omit it. This, and similar small and

uncertain corrections are not ignored, however. Good
practice requires that a star's position be determined from

an equal number of observations with circle west and circle

east, with the result that several slight errors are largely

eliminated from the mean of all the observations.

* For an exposition of this method, see Annalen der Sternwarte in

Leiden, Band II, seite [50-92].
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123. Reduction to the meridian. Theoretically, the ob-

server is supposed to bisect the image of a star with the

declination micrometer at the instant of meridian passage.

If for any reason the bisection is made at t seconds before

or after meridian passage, the necessary correction x to

reduce to the meridian may be found from equation (281)

and the corresponding table in § 111. The correction x

must be applied to the circle reading with the proper sign

to increase the observed polar distance.

124. Refraction. The refractions given by (95) must

be applied to the circle readings in such a way as to

increase the zenith distances.

125. Parallax. Observations on bodies within the solar

system will require correction for parallax, by the methods

of §§ 25-27.

126. The meridian circle is applied to the determination

of declinations by two general methods.

1st. Fundamental Determinations. The latitude ^ of

the observer being known, the equator reading of the circle

is given by
Equator reading = Zenith reading ± <f>, (287)

the lower sign being for circle east. The difference

between the circle reading for a star (corrected for refrac-

tion, etc.), and the equator reading, is the declination of

the star, determined fundamentally.

2d. Differential Determinations. If a standard star be

observed in the usual manner, its circle reading (corrected

for refraction, etc.), plus or minus its known declination,

will be the equator reading of the circle. The corrected

circle reading for an undetermined star will differ from

the equator reading by the declination of the star. Fur-

ther, the equator reading obtained from the standard star,

combined with the zenith reading, will furnish a new deter-

mination of the latitude.
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A circumpolar star observed for latitude at both upper

and lower culmination has the advantage that any error

of declination is eliminated from the mean result ; but the

disadvantage, for observers situated well toward the equa-

tor, that the refractions are large.

Since the latitude of a place varies appreciably, funda-

mental determinations of declination require a knowledge

of the current value of the latitude. Programs for funda-

mental work should contain a few standard stars, as checks

on each night's results.

In programs for differential work, the undetermined

stars should be preceded, accompanied and followed by

standard stars ; the range of declinations for the two kinds

being about equal, to assist in eliminating uncertainties in

refractions. The equator reading should be obtained from

all the standard stars. A program covering four or five

hours should contain eight or ten standard stars. If the

value of the latitude is known, a long series of such obser-

vations of the standard stars will furnish corrections to the

standard declinations themselves.

The following abridged program of observations, made
with the Repsold meridian circle of the Lick Observatory,

illustrates many of the important principles treated in this

chapter.

The mean of the nadir and micrometer readings taken

just before and after the observations of stars furnished the

Values
Nadir reading = 134° 56' 29".82,

Micrometer (zero reading) = 17'.000.

The meteorological observations required for computing

the refractions were made at 15.2 hours sidereal time,

thus

:

»

Barom. 25.70 inches, Att. Therm. + 64° F., Ext. Therm. + 63°.0 F.

Other meteorological observations were taken throughout

the program.
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By way of illustration, the original circle, microscope and

micrometer readings for the first star, 7 Ursce Minoris, were

:

Circle Microscopes * Micrometer

349° 46' I 45".l (48') 45".2 16'.500

II 54 .0 54 .0

ni 54 .1 54 .0

IV 55 .8 56 .0

Means 52 .25 52 .30

Original circle reading 349° 46' 52".28

Correction for micrometer, + O'.SOO . + 24".05

Circle reading 349° 47' 16".33

In this program, the first and third stars are standard

circumpolars, the former at upper, and the latter at lower

culmination. The second and sixth stars are standard stars.

The declinations assigned are the apparent declinations of

the standard stars, and the approximate declinations of the

undetermined stars. The circle readings include the cor-

rections for the readings of the declination micrometer.

The apparent zenith distances, z, are the differences of the

circle readings and the zenith reading, to be used in com-

puting the refractions. The corrected circle readings,

minus the declinations of the standard stars, are the ob-

served equator readings, and their mean for the two south-

ern stars is adopted as the equator reading. The differences

of the zenith reading and the observed equator readings

for the four standard stars are four values of the observed

latitude. The corrected circle readings for the two unde-

termined stars, minus the mean equator readings are the

observed declinations. The corrections for graduation

errors have not been applied : the errors for the particular

graduations used have not been determined.

* It is the custom of this observer to obtain the microscope readings on

two graduations on opposite sides of the micrometer zero positions ; to

use the mean of the seconds given by the eight readings ; and to correct

for runs for the distance that the mean of the two graduations is from the

micrometer zero. The value of the correction for runs is determined from

all the readings of the program.



CHAPTER X

ASTRONOMICAL AZIMUTH

127. In many problems in higher surveying the azimuth

of a point on the earth's surface, as viewed from the point

of observation, is required to be very accurately known.

It is determined by measuring the difference of the azi-

muths of the point and a star by means of a theodolite,

a surveyor's transit, or any similar instrument designed

for measuring horizontal angles. The azimuth of the star

is computed from the known right ascension, declination,

latitude and time ; whence the azimuth of the point can be

obtained.

Only the four circumpolar stars, whose places are given

in the Ephemeris, pp. 302-313, should be used in accurate

determinations.

The point whose azimuth is to be determined is marked

conveniently by a lamp arranged to shine through a small

hole in a box, placed directly over the point. It should be

at least one mile from the observer. If no provision has

been made for illuminating the wires of the telescope at

night, they can be rendered visible by tying a piece of thin

unglazed white paper over the object glass of the telescope,

first cutting a hole in the paper nearly as large as the

object glass, and throwing the light of a bull's-eye lantern

on the paper.

The instrument is set up over the point of observation

(marked in some way) and carefully adjusted. The hori-

zontal graduated circle is fixed in position by clamping.

The level screws and other adjusting screws must not be

191



192 PRACTICAL ASTRONOMY

touched during a series of observations. If the rotation

axis of the telescope is not truly horizontal, an error is

introduced in the measured difference of azimuth of the

mark and star, which must be allowed for. In the finer

instruments the inclination of the axis is measured by-

means of a striding level. The effect of an error of col-

limation is practically eliminated by reversing the instru-

ment and observing an equal number of times in both

positions. We shall consider that this is always done.

If more than one series of observations is made, the hori-

zontal circle should be shifted so that a different part of

it may be used, thereby eliminating largely any errors of

graduation of the circle.

128. Correction for Level. When the rotation axis of

the telescope is inclined to the horizon, the line of sight

does not describe a vertical circle, and the horizontal circle

reading requires a small correction. Let h be the eleva-

tion of the west end of the axis above the horizon, and let

the west end of the produced axis cut the celestial sphere

in W; let y be the corresponding correction to the circle

reading ; and let Z be the zenith and *S' the star. Then, in

the triangle WZS,

WZ = m°-h, ZS = z, WS^ 90°, WZS = 90° + y;

and, therefore,
sin b cos z — cos b sin z sin y = 0.

But b and i/ are very small, and we may write

y = bcotz', (288)

and for circumpolar stars, we may write

y = b tan
<f>. (289)

The value of b is found by (166) or (167), or by the

methods of § 94. If the illuminated mark is not in the

horizon, the circle readings on the mark must be corrected

by (288), using its zenith distance z.
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129. Correction for diurnal aberration. Owing to diur-

nal aberration the star will be observed too far east. In

the most refined observations this must be allowed for.

The correction to the circle reading is given by (118);

which, for circumpolar stars, is approximately

rf^ = + 0".31cos^. (290)

If the circles cannot be read to less than 1", this correc-

tion is negligible.

130. Correction for error of runs. If reading microscopes

are used [§ 58], the circle readings must be further cor-

rected for error of runs.

AZIMUTH BY A CIRCUMPOLAR STAR NEAR
ELONGATION

131. A star is at western or eastern elongation when its

azimuth is the least or greatest possible. It is then moving

in a vertical circle, and is in the most favorable position

for azimuth observations. Only one observation can be

made at the instant of elongation, but it is customary to

make several observations just before and after elongation,

and allow for the change in azimuth during the intervals.

At the instant of elongation, the triangle formed by the

pole, star and zenith, which we shall denote by PSZ, is

right-angled at the star. If we let 6^ be the sidereal time,

and -4q, t^ and Zq the azimuth, hour angle and zenith dis-

tance of the star at elongation, a and h its right ascension

and declination, and <^ the observer's latitude, we shall

have, for western elongation,

PZ = 90''-.^, P5^90°-8, ZS^z^,

PZS = 180° - J,„ ZPS = t^, PSZ = 90°
;

'and for eastern elongation,

PZS = /lo - 180°, ZPS = 360° - ^0-

o
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We can write

tan <i sin <i . . cosS ^n^-,^
cos/o = T—^» cos Zn = . I , sin^o=± -j-> (291)

" tan S sin 5 " cos <^ ^ ^

^o = a+/o- (292)

tQ is in the first quadrant for western elongation, and in the

fourth for eastern ; Zq is always in the first quadrant ; and

Aq is less than 180° for western elongation, and greater

than 180° for eastern. We can also write

. . cos 8 sin 8 cos
<o ynno\± sin ^0 = = ,
° > (293)

" COS0 sin<^ ^ ^

± cos^Q = — sinSsin^Q, (294)

in which the upper signs are for western elongation, the

lower for eastern.

If the star is observed at any other hour angle t, its

azimuth A is given by (16) and (17). Multiplying (16)

by (293), (17) by (294), and subtracting one product from

the other, we obtain

sin z sin (A^ - A) = ^ sin S cos 8 2 sin^ J (/„ - t). (295)

If the observations are made near elongation, t will not

differ much from i^, Aq — A will be small, and for the

circumpolar stars z will not differ much from Zq. There-

fore we can write, without sensible error,

A -A=T !E1^^. 2 sin2 1(^,-0
" sinz„ sinl"

in which the lower sign is for eastern elongation, as

before. Aq — A is the correction to be applied to the

circle reading for an observation made at hour angle f,

to reduce to the corresponding circle reading for an obser-

vation made at hour angle t^.

For convenience, let

2sinH(^o-0

and (296) becomes

^o-^=Tm5Hll^. (297)
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The values of m can be taken from Table III, Appendix,

for the different values of t^ — t. If we let wIq be the mean

of the several values of w, the corrections can be applied

collectively to the mean of the circle readings on the star,

and the equation (297) becomes

A A ~r- sin 8 COS 8 /onQ\

sm Zq

in which Aq — A is the correction to the mean of the

circle readings. Further, if the level readings have been

taken symmetrically with reference to the program, which

can always be done, the mean value of ?/, equation (289),

can bd applied to the mean of the circle readings.

132. The values of t^ and 6q having been computed for

the star to be observed, the instrument is carefully adjusted,

and a program similar to this is followed :

Make two readings on the mark
Read the level

Make four readings on the star

Read the level

Make two readings on the mark
Reverse

IMake two readings on the mark
Read the level

Make four readings on the star

Read the level

Make two readings on the mark

The times of observation are noted on a time-piece, pref-

erably a sidereal chronometer. Its correction must be

known within one or two seconds if the most refined form

of instrument is employed, or to the nearest minute if an

ordinary surveyor's transit is used. This correction can

be obtained by any of the methods described in the pre-

ceding chapters, or by a comparison with the time signals

jsit the nearest telegraph station. The chronometer time of

elongation is now known. Subtracting from it the several

times of observation, the values of t^ — t are found, and
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the values of m corresponding to them taken from Table

III. Forming the mean m^ and computing Zq from (291),

the value of Aq — A is found and applied to the mean of

the circle readings. The mean of the corrections for level

errors and the correction for diurnal aberration are now
applied. The corrected mean circle reading, which we
shall call s, corresponds to the azimuth Aq of the star at

elongation, which is computed by (291). If k is the mean
of the circle readings on the mark, and M the azimuth

of the mark, then

M = k-(s- Af,). (299)

The circle reading when the telescope is directed to the

south point of the horizon will be equal to s — Aq.

133. Example. Detroit Observatory, Wednesday, 1891

May 6. Find the azimuth of a given point (nearly in the

horizon) from observations on S Ursce Minoris near its

eastern elongation. Observer's latitude, 42° 16' 48".

The apparent place of the star was

a = 18* 1^ 44«, 8 = + 86° 36' 25".0.

Equations (291) and (292) are solved as below.

tan
<i>

9.958704 sin <^ 9.827856 cos 8 8.772214

tan 8 1.227024 sin 8 9.999236 cos<)!» 9.869153

t^ 273° 5' 25" zo ^7° 37' 42" A^ 184° 35' 17".8

t^ 18»12"'22»

a 18 7 44

$0 12 20 6

The chronometer correction was + 18"* 52*, and, there-

fore, the chronometer time of elongation was 12'' 1"* 14*.

A good surveyor's transit, whose horizontal circle was

read to 10" by two verniers, and which was provided with

plate levels and a delicate striding level, wafe placed over

the point of observation and carefully leveled a short time

before elongation. The following observations were made

:
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No. Object Telescope Chronometer Vernier A Vernier B

(1) Mark Reversed 96° 16' 40" 276° 16' 30"

(-^)
« « 96 16 35 276 16 25

(•^) Level

(4) Star « 11*44"'52» 243 39 20 63 39 20

(5)
(( « 48 40 243 39 50 63 39 50

(6)
(( (( 51 6 243 39 50 63 39 50

0) <( i( 53 11 243 40 63 40 5

(8) Level

(9) Mark a 96 16 45 276 16 40

(10)
a (( 96 16 50 276 16 40

(11)
« Direct 276 17 96 16 45

(12)
(( <( 276 16 55 96 16 45

(13) Level

(14) Star <( 12 5 50 63 40 10 243 40 10

(15)
(( « 7 54 63 40 243 40

(16)
a a 9 44 63 39 50 243 39 50

(17)
li a 11 27 63 39 45 243 39 55

(18) Level

(19) Mark <( 276 16 45 96 16 30

(20)
ii (( 276 16 45 96 16 35

The level readings given by the striding level were

(3) (8) (13) (18)

W E W E W E W E
4.4 4.1 4.2 4.0 4.0 4.4 4.0 4.2

4.3 4.0 4.3 3.8 4.0 4.2 4.1 4.2

4.4 4.0 4.2 3.9 4.0 4.2 4.0 4.2

4.3 3.8 4.4 3.8 4.1 4.4 4.2 4.2

The value of one division of the level was 10". 7, and

therefore, from (166), the inequality of the pivots being

negligible,

(3) (8) (13) (18)

b = + 2".0, -f 2".l, - 1".4, - 0".6,

and by (289),

(3) (8) (13) (18)

y = + 1".8, + 1".9, - 1".3, - 0".6.
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The solution of (298) for the eight readings on the star

is given below. The column " Circle Readings " is formed

by taking the means of Vernier A and Vernier B.

No. Circle Readings to-t m

(4) 243° 39' 20" + 16'» 22* 525".7

(5) 243 39 50 + 12 34 310 .0

(6) 243 39 50 + 10 8 201 .6

(7) 243 40 2 + 83 127 .2

(U) 63 40 10 - 4 36 41 .5

(15) 63 40 - 6 40 87 .3

(16) 63 39 50 - 8 30 141 .8

(17) 63 39 50 -10 13 204 .9

Means 63 39 51.5 m^ = 205 .0

log mo 2.31175

sin 8 9.99924

cos 8 8.77221

coseczo 0.13148

log(^o-^) 1.21468

A^- A + 16".4

The mean of the four values of «/ is + 0".4. The value

of dA, from (290), is — 0".3. The corrected circle read-

ing on the star at elongation is therefore

s = 63° 39' 51".5 + 16".4 + 0".4 - 0".3 = 63° 40' 8".0.

The mean of all the readings on the mark is

k = 276° 16' 41".6

;

and, therefore, by (299),

Af=37°ll'51".4.

Since the verniers on this instrument read to only 10",

the diurnal aberration could have been neglected, and the

other corrections computed to the nearest second only.

But all the corrections have been applied here, to illustrate

the method.
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AZIMUTH BY POLARIS OBSERVED AT ANY HOUR ANGLK

134. When the azimuth is required with the greatest

possible accuracy, the observations should always be made
at or near elongation, and reduced as in the preceding sec-

tion. However, good results can be obtained by observing

Polaris in any position, if the time is accurately known.

The time should be known within 0*.5 when using the

finest instruments, and within 5* or 10* when using a good

surveyor's transit whose least reading is 10".

As in the preceding method, the observations should be

made on the mark and star in both positions of the tele-

scope. If the observations are made in quick succession,

the mean of two or three observations made before revers-

ing may be treated as a single observation, and similarly

for those made after reversing. But if the separate obser-

vations are several minutes apart, each observation should

be reduced separately.

The sidereal time 6 of observation having been noted

with great care, the hour angle t of Polaris is given by (41).

If we let the azimuth A of the star be measured from the

north point, -|- if the star is west of the meridian and — if

east, and let q be the star's parallactic angle [§ 6], we may
write [Chauvenet''s Sph. Trig., § 24]

tanK9+^) = J^|^|^coti<=/cot^<, (300)

tan i (5
- ^) = cos 1(8 + $)"°^ ^^ =-^' ^°* ^ '' ^^^^>

A = \iq^A)-\{q-A). (302)

The auxiliary quantities, /and/', depending on Sand ^,

are constant for a night's observations, and with surveyors'

instruments may be considered constant for several weeks.

When they have been computed, once for the whole series

of observations, they may be combined rapidly with the
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values of cot 1 1 for the individual observations, to deter-

mine ^{q+A) and ^{q — A), and thence A by (302).

The values of q need not be determined at all. The cor-

rection for level is given, as before, by (288), and for

diurnal aberration by (290).

With A representing the azimuth of the star measured

from the north point as defined above, and computed by

means of (300), (301) and (302), let *8' be the circle read-

ing on the star corrected for level and aberration, K the

mean of all the readings on the mark, and N the azimuth

of the mark measured from the north point, -f if west of

north, and — if east. Then, assuming that the circle read-

ings increase in the direction of motion of the hands of a

watch, we shall have

N=S + A - K; (303)

and S + A will be the circle reading when the instrument

points due north.

Example. Detroit Observatory, Wednesday, 1891 May 6.

Find the azimuth of a given point nearly in the horizon,

from the following observations of Polaris^ made with the

instrument described in § 133.

No. Object Telescope Chronometer Vernier A Vernier B

(1) Mark Direct 276° 16' 40" 96° 16' 35"

(2)
" <( 276 16 40 96 16 30

0) Level

(i) Star a 13ft22'»59» 59 15 50 239 15 40

(5)
a 13 26 30 59 17 239 16 50

(6)
a 13 27 57 59 17 30 239 17 20

(7) Reversed 13 32 47 239 19 40 59 19 45

(8)
« 13 34 56 239 20 35 59 20 30

(9)
« 13 36 40 239 21 20 59 21 15

(10) Level

(11) Mark « 96 16 40 276 16 30

(12)
(( (( 96 16 40 276 16 35
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The striding level gave

(3)

W E
3.6 5.3

4.6 4.3

whence, by (166),

(3)

b = - 3".3,

(10)

W E
4.9 4.1

4.5 4.5

(10)

+ 2".l.

The position of Polaris was, American Ephemeris, p. 306,

a = 1* 17™ 53», 8 = 88° 43' 29",

and the chronometer correction was +18"* 62*.

The means of the observations made before and after

reversal are reduced below.

Before After

Chronometer 13* 25'" 49* 13* 34™ 48*

A^ + 18 52 + 18 52

d 13 44 41 13 53 40

a 1 17 53 1 17 53

e-a = t 12 26 48 12 35 47

t 186° 42' 0" 188° 56' 45"

i« 93 21 94 28 22

8 + 88 43 29

<^ + 42 16 48

8-*^ + 46 26 41

8 + *^ + 131 17

H8-</>) + 23 13 20

K8 + <A) + 65 30 8

cos KS - <^) 9.963307

sinH8+«^) 9.959031

log/ 0.004276 0.004276

cot\t 8.767417„ 8.893338„

\{q + A) - 3° 22' 59" -4° 31' 1"

sin K8 - ^) 9.595825

cos \ (8 + ^) 9.617690

log/' 9.978135 9.978135

cot Jf 8.767417„ 8.893338„
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h(q-A) -3° 11' 9" -4° 15' 14"

A -0 11 50 -0 15 47

Circle on star 59° 16' 42" 239° 20' 31"

y -3 +2
dA
S 59 16 39 239 20 33

S + A 59 4 49 239 4 46

K 276 16 36 96 16 36

N 142 48 13 142 48 10

Mean N 142° 48' 12"

The corrections should be carried to tenths of seconds

when refined instruments are used.

The azimuth of the same mark was measured on the

same night with the same instrument, by means of obser-

vations of B Ursce Minoris taken near eastern elongation

[see example of the preceding section]. The azimuth

obtained, measured from the south point, was

M = 37° 11' 51".4.



CHAPTER XI

THE SURVEYOR'S TRANSIT

135. The surveyor's transit is adapted to the determina-

tion of the time, latitude and azimuth by many of the

preceding methods. These elements can easily be deter-

mined to an accuracy within the least readings of the cir-

cles, if the instrument is of reliable make, and is provided

with spirit levels. We shall assume that the observer

uses a mean time-piece, which we shall call a watch, and

that he has a thorough knowledge of the subject of Time,

Chapter IT, without which the Ephemeris cannot be used

intelligently. We shall assume, also, that the vertical

circle of his instrument is complete, and that the degrees

are numbered consecutively from to 360. In case they

are not, the observer can readily reduce his readings to

that system. The instrument is supposed to be carefully

adjusted. A method of illuminating the wires at night

is given in § 127.

Figure 26 illustrates a form of instrument well adapted

to the solution of the problems described in this chapter

;

but the methods can be used, within limits, with nearly

all forms of the surveyor's transit instrument.

DETERMINATION OF TIME

136. By equal altitudes of a star. Set the instrument

up firmly, level it, and direct the telescope to a known
bright star east of the meridian. Pointing the telescope

slightly above the star, clamp the vertical circle and note

the time T' when the star crosses the horizontal wire.

203
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The vertical circle must not be undamped. A short time

before the star reaches the same altitude west of the

meridian, level the instrument, move it in azimuth until

the telescope is directed to a point just below the star,

wait for the star to enter the field, and note the time T"
when it crosses the horizontal wire. The sidereal time

when the star was on the observer's meridian equals its

right ascension a, and this corresponds to the mean of the

two watch times. Converting the sidereal time 6 = a into

the corresponding mean time T, the watch correction A^
is given by

h.T=T -\{T' + T"). (304)

Example. Thursday, 1891 March 5. In longitude
^h 34™ 55s^ Regulus was observed at equal altitudes east

and west of the meridian, at the watch times

T' = 8* T™ 34% T" = 14* 10« 20».

Required the watch correction.

From the American Ephemeris, p. 332, a= e=10'' 2'" 35^

Converting this into mean time, § 18, we find

and, therefore, by (304), the watch correction was

Ar = -54»;

or the watch was 54* fast.

137. Bi/ a single altitude of a star. Level the transit

instrument. Direct the telescope very slightly above a

known star in the east or below a known star in the

west, and clamp the telescope. Note the watch time when

the star crosses the horizontal wire and read the vertical

circle. Unclamp the telescope and repeat the observation

once or twice, as quickly as possible. Double reverse the

instrument, and make the same number of observations as

before. Form the means of the circle readings made be-
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fore reversal and of those made after. Subtract one from

the other in that order which makes their difference less

than 180°. One half this difference is the apparent zenith

distance of the star at T\ the mean of the several watch

times of observation. Adding the refraction given by

(97),
r = 58" tan z, (305)

the result is the true zenith distance z. Substituting the

values of z, 4> ^^^ ^ in (38) or (39), the hour angle t is

found. The sidereal time 6 is given by [§ 8J,

e = a + t. (306)

Converting 9 into the mean time T^ the watch correction

is given by
^T=T-T'. (307)

Example. Saturday, 1891 April 25. In latitude

+ 42° 16' 47" and longitude 5" 34"* bb\ the following alti-

tudes of Arcturus were observed east of the meridian.

Find the watch correction.

Telescope Watch Circle reading

Direct 7* 52"* 23* 34° 43' 0"
« 53 33 34 55 30
(( 54 20 35 4

Reversed 55 37 144 42 30
« 56 30 144 33
« 57 18 144 24

The means of the circle readings are 34° 54' 10" and
144° 33' 10"; and one half their difference is the

Apparent zenith distance, 54° 49' 30"

Refraction, r, 1 22

True zenith distance, z, 54 50 52

From the Ephemeris, p. 340,

a = 14*10'" 43', 8 = + 19° 44' 52".

log 58 1.7634

tanz 0.1520

logr 1.9154

r 82"
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The solution of (38) is

z 54° 50' 52" logsinK2+(«^-8)] 9.79595

<^ + 42 16 47 log sin 1 [2 -(<)!) -8)] 9.44449

s + 19 44 52 logsec|[2+(^ + S)] 0.28114

<^-8 22 31 55 log sec \\z-{<^ ^ 8)] 0.00085

</» + 8 62 1 39 log tan2

1

1 9.52243

2 +(</>- 8) 77 22 47 log tan \ t 9.76121„

2-(«^-8) 32 IS 57 It 150° 0' 48"

z + ((^ + 8) 116 52 31 t 300 1 36

2 -(</> + 8) - 7 10 47 t 20* O"* 6"

Solving (306), 6 = 10" 10"* 49*. The equivalent mean
time is T =1'' 55"' 45* ; and the mean of the six times of

observation is T' = 7'' 55"* 2*. Therefore,

Ar = + 43«.

138. By a single altitude of the sun* Observe the

transits of the sun's upper and lower limbs over the hori-

zontal wire by the method used for a star, § 137. Double

reverse, and repeat the observations.! Form half the

difference of the means of the circle readings, and add the

refraction given by (305), as before. Further, subtract

the parallax given by (64)

p = 9"smz, (308)

and the result is the sun's true zenith distance z at the

mean of the times, T'. The correct mean time is probably

known within 5"* or 10™. Increase it by the longitude,

and the result is an approximate value of the Greenwich

mean time. Take from the Ephemeris, p. II of the month,

the value of the sun's declination S at that time. The

* The observer must cover the eyepiece with a small piece of very

dense neutral-tint glass before looking through at the sun. The observa-

tions can be made, also, by holding a piece of paper a short distance back

from the eyepiece, and focusing the eyepiece so that the images of the

sun and wire are seen on the paper.

t While waiting for the second limb to approach the wire, the time

may well be spent in reading the vertical circle.
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Ephemeris contains the apparent declination for Greenwich

mean noon, and the " difference for one hour," whence the

declination at any instant can be found. Solve (38) or

(39) for these values of 2, 8 and ^. The resulting hour

angle t is the observer's apparent solar time. Convert

this into the equivalent mean time T, by § 15. The watch

correction is given by (307), as before.

Example. Thursday morning, 1891 May 6. In latitude

+ 42° 16' 50" and longitude 5" 35^ the following observa-

tions of the sun were made with Buff & Berger transit No.

1554. Required the watch correction.

Telescope Limb Watch Circle reading

Direct Upper 20* SS™ 59' 41° 48' 30"

i( Lower 41 59 41 48 30

Eeversed Upper 46 49 137 33
u Lower 49 50 137 33

One half the difference of the circle readings is

47° 52' 15". The refraction, by (305), is 64", and the

parallax, by (308), is 7". Therefore the true zenith dis-

tance z of the sun's center is 47° 53' 12". The mean of

the four watch times is 20" 44'" 24'. We have

T> 1891 May Qd 20* 44-" 24'

Longitude 5 35

Gr. mean time 7 2 19
(( (1 11 7 2*.32

From the American Ephemeris, p. 75, the sun's declina-

tion at Greenwich mean noon. May 7, was 4- 16° 48' 53",

and the difference for one hour, + 41". The change for

2''.32 was therefore 96", and the required value of the

declination was S = + 16° 50' 29".

Substituting the values of z,
<f>

and B in (38), and solv-

ing as was done in § 137, we obtain the hour angle t =
312° 12' 10" = 20" 48"' 49^ The observer's true time is

therefore May 6*^ 20" 48'" 49*. Converting this into the
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mean time T, by § 15, we find T= 1891 May Q" 20" 45'" 15^

The watch correction is

AT = 20 45« 15' - 20» 44»» 24» = + 51».

DETERMINATION OP GEOGRAPHICAL LATITUDE

139. By a meridian altitude of a star. A star is on the

observer's meridian when the sidereal time is equal to

its right ascension a. Convert this into the corresponding

mean time, subtract the watch correction obtained by any

of the above methods from it, and the result is the watch

time of the star's meridian passage. A few seconds before

this watch time direct the telescope to the star, bring the

star's image on the horizontal wire, and read the circle.

Double reverse quickly, and make another observation.

As before, form one-half the difference of the circle read-

ings, add the refraction given by (305), and the sum is the

star's true zenith distance z. Take the value of 8 from

the Ephemeris. For a star observed south of the zenith,

<^ = 8 + 2

;

(309)

and for a star observed between the zenith and pole,

(l)^8-z. (310)

For a star below the pole the sidereal time of meridian

passage is 12'' + a. Obtaining the value of z as before, the

latitude is given by
<l>
= 180° -8-z. (311)

Example. Ann Arbor, Friday, 1891 April 24. a Hydroe

was observed on the meridian with a surveyor's transit, as

below. Required the latitude.

Telescope Circle reading

Reversed 140° 26' 30"

Direct 39 33

One half the difference of the circle readings is 50° 26'

45". The refraction is 70". Therefore, z = 50° 27' 55".
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From the Ephemeris, p. 331, 8 = - 8° 11' 18". Therefore,

from (309),
<^ = 42° 16' 37".

To find the watch time when the star is on the meridian,

we have, from the Ephemeris, a = = 9'' 22"* 14*. The

corresponding mean time, by § 18, is 7'' 11"* 13*. The

watch correction is + 43% whence the required watch time

is 7" 10™ 30*.

140. Bi/ a meridian altitude of the sun. The sun is on

the meridian at the apparent time O'' 0"* 0*. Apply the

equation of time to this, by § 15, and subtract the known
watch correction. The result is the watch time of the

sun's meridian passage. One or two minutes before this

watch time, direct the horizontal wire of the telescope to

the upper limb of the sun, and read the vertical circle.

Observe the lower limb in the same way. Double reverse

and observe both limbs again. Form half the difference of

the means of the readings in the two positions. Add the

refraction given by (305), and subtract the parallax given

by (308). The result is the value of z. Take from the

Ephemeris the value of 8 for the time of meridian passage.

The latitude is now given by (309), as in the case of a

star.

Example. Wednesday, 1891 March 25. In longitude

5^ 35"* the following meridian altitude observations of the

sun were made with a surveyor's transit. Required the

latitude.
Telescope Limb Circle reading

Direct Upper 49° 54' 30"
« Lower 49 22 30

Reversed « 130 5 30
(( Upper 130 38 30

One half the difference of the means of the circle read-

ings is 40° 21' 45". The refraction is 49". The parallax

is 6". Therefore, z = 40° 22' 28".
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The Greenwich apparent time of observation was March
25'* 5^ 35"». The value of 8 at that instant was + 1° 54' 32",

Ephemeris, p. 38. Therefore, by (309),

<^ = 42° 17' 0".

To find the watch time of meridian passage, we have.

Apparent time 0* 0"' 0*

Equation of time +6 3

Mean time 6 3

Watch correction — 15

Watch time 6 18

DETERMINATION OF AZIMUTH

141. The two methods of determining azimuth which

are described in the preceding chapter are adapted to the

surveyor's transit, and need no further explanation. With

this instrument the diurnal aberration can be neglected.

If the transit is provided with plate levels only, they

should be kept in perfect adjustment. If the bubble of

the level which is parallel to the rotation axis of the tele-

scope remains constantly in the center, no correction for

level is required. But if the bubble is n divisions of

the level from the center when an observation on a star

is made, and d is the value of one division of the level,

the circle reading must be corrected by

y =± nd cot z
; (312)

+ if the bubble is too far west, — if too far east.



CHAPTER XII

THE EQUATORIAL

142. This instrument consists essentially of the follow-

ing parts : A supporting pier ; a polar axis parallel to the

earth's axis, supported at two or more points by the pier in

such a way that it can rotate ; a declination axis attached

to the upper end of the polar axis, and at right angles

to it, in such a way that it can rotate ; a telescope firmly

attached to one end of the declination axis, and at right

angles to it ; a graduated declination circle attached to the

other end of the declination axis ; a graduated hour circle

attached to the polar axis, and at right angles to it; a

finding telescope or finder, to assist in pointing the principal

telescope, and attached to it ; a driving clock and train of

wheels for rotating the instrument about its polar axis at a

uniform rate. The various moving parts are so counter-

poised that the telescope will be in equilibrium in all posi-

tions. The principal features of the equatorial are well

illustrated in Fig. 27.

A sidereal chronometer is an almost indispensable com-

panion of the equatorial.

The equatorial serves two purposes

:

1st. As an instrument of direct observation and dis-

covery, by assisting the vision.

2d. As an instrument for determining very accurately

the relative positions of two objects comparatively near

each other, by means of a micrometer eyepiece [§ 60]. If

the position of one of the objects is known, the position of

212
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the other is known as soon as their relative positions are

determined.

Fig. 27

143. By the above system of mounting it is evident that

the telescope can be directed to any part of the sky ; and
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that it will follow a star in its diurnal motion, by revolv-

ing the instrument about the polar axis alone ; for in that

case the line of sight maintains a constant angle with the

celestial equator, and therefore describes a circle which is

identical with the star's diurnal circle. Since the star's

angular motion is uniform, the telescope is made to follow

it by means of the sidereal driving clock. In some obser-

vations the driving clock is not used; in others it is

indispensable.

When the telescope is revolved upon the declination

axis, its line of sight describes an hour circle on the celestial

sphere. The position of this hour circle is indicated by

the reading of the graduated hour circle of the instrument.

The position of the telescope in this hour circle is indicated

by the reading of the graduated declination circle. When
the telescope is directed exactly to the south point of the

equator, the hour circle reading should be 0'' 0"* 0*, and the

declination circle reading should be 0° 0' 0". Then, if the

other parts of the instrument are in adjustment, and the

telescope is directed to a star, the hour angle and declina-

tion of the star will be indicated (neglecting the refraction

and parallax), by the hour circle and declination circle

readings.*

ADJUSTMENTS

144. It is not essential that the errors of adjustment of

an equatorial be entirely eliminated, or that their values

be accurately known ; but it is a practical convenience to

have the errors small, particularly so for observations on

objects near the poles of the equator.

It is expected that the maker of the instrument will

* The hour circle should read time. It should be graduated from 0* to

24* toward the west, or from 0* to 12* in both directions from 0*. The

declination circle will read arc. It may be graduated from 0° to 360°, or

from 0° to 180° in both directions from one of its equator points, or from
0° to 90° in both directions from its two equator points. We shall suppose

it to read from 0° to 360°.
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adjust the various parts of it as perfectly as possible u'ith

reference to each other. It remains for the observer to place

the instrument as a whole in correct position.

The polar axis should be in the plane of the meridian

;

the elevation of the polar axis should equal the latitude of

the place ; the hour circle should read zero when the

telescope is in the meridian ; the declination circle should

read zero when the telescope is in the equator ; and the

lines of sight of the finder and telescope should be parallel.

The instrument should first be placed as nearly as possible

in position, by estimation. Then direct the telescope to any

known star near the southern horizon whose right ascension

is «. The star will be on the meridian at the sidereal time

6 = a. Move the whole instrument in azimuth so that the

star is in the center of the telescope when the chronometer

time plus the chronometer correction is equal to 6 = a.

The order of making the final adjustments is as below.

145. To adjust the finder. Using the lowest power eye-

piece, direct the telescope to a bright star. Replace the

low-power eyepiece by a high-power. Keeping the star in

the center of the field of view, turn the adjusting screws of

the finder so that the star is on the intersection of the cross

wires in the finder. The two telescopes will then be

sufficiently near parallelism.

146. To determine the angle of elevation of the polar axis^

and the index correction of the hour circle.* Across the

object end of the telescope firmly tie a piece of wood which

projects several inches from the telescope tube on the side

opposite the pier. Pass a fine thread through a very small

hole in the projecting end, and fasten it. Direct the tele-

scope to the zenith. Near the eye end and on the same

* This very simple and satisfactory method was proposed by Professor

Schaeberle, iu der Astronomische Nachrichten, No. 2374. It has the

advantage that the errors can be determined, and corrected, in the day-

time.
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side as the projecting arm, fasten a block of wood. To
this screw a metal plate so that it will be perpendicular

to the axis of the tube, and in which is a very small circu-

lar hole as nearly as possible (by estimation) under the

hole above. Pass the thread through it, tie a plumb-bob

to the end of the thread near the floor, and let it swing in

a vessel of water. Move the telescope by the slow-motion

screws until the plumb-line passes through the center of

the lower hole. Read both verniers of the hour and decli-

nation circles. Unclamp, hold the plumb-bob in the hand

to avoid displacing the metal plate, reverse the telescope

to the other side of the pier, and set it so that the plumb-

line again passes centrally through the hole. Read both

circles as before.

Let h equal the angle of elevation of the polar axis.

The difference of the readings of the declination circle in

the two positions is 180°— 2 A. The elevation should equal

the known latitude <^. The error is h —
(f).

Change the

last circle reading by this amount, by moving the telescope

in declination in the proper direction. Adjust the angle

of elevation by the proper screws until the plumb-line

again passes through the center of the hole.

If the declination circle is graduated so as to read from
0° to 90° in both directions from its two equator points,

then the mean of the circle readings for the two positions

of the telescope is at once the inclination of the polar axis

to the horizon.

The mean of the hour circle readings in the two posi-

tions is the reading of the circle when the telescope is in

the meridian. This should be O'* 0"* 0*. The index error

of the hour circle is the mean of the readings minus O'' 0"' 0*

(or minus 24'' 0'" 0*). To correct for it, set the circle at

this mean reading ; then move the vernier screws until the

reading is 0'* 0'" 0^

The index correction of the hour circle is equal to the

index error with its sign changed. If the error is not
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removed by adjusting the verniers, the index correction

must be applied to every reading made with the hour circle,

in order to obtain the true reading.

If the errors are large, these adjustments should be

repeated once or twice.

Example. 1891 Feb. 20. The following plumb-line

observations were made on the 6-inch equatorial of the

Detroit Observatory. Determine the errors. The last

column gives the position of the telescope with reference

to the pier:

Hour Circle Declination Circle

Telescope

Vernier A Vernier B Vernier A Vernier B

24ft 2" 53»

11 56 56

12» 2™ 58»

23 57 6

135° 45' 30"

40 16 45

315° 45' 00"

220 16 .30

E

The means of the declination circle readings were

135° 45' 15" and 40° 16' 38", and therefore h equaled

42° 15' 42". The value of <^ is 42° 16' 47". The axis was

therefore 1' 5" too low. The telescope was moved in

declination until the verniers read 40° 17' 45" and
220° 17' 30", and the axis adjusted until the thread was

again central in the hole.

The hour circle readings were 24'' 2'" 55*.5 and 23'' 57'" 1*,

and their mean was 23'' 59'" 58^2. The error was there-

fore — 1*.8. The verniers were moved to the west 2*.

A repetition of the observations gave h = 42° 16' 49",

and the mean of ' the hour circle readings, 24'' 0'" 0^5.

Further adjustment was not required. The index error of

the hour circle was + 0^5, and the index correction to be

applied to future readings was — 0^5.

147. To determine the azimuth correction of the vertical

plane containing the polar axis. This is best determined
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by observations on one of the four Ephemeris circumpolar

stars near its culmination.

Using the micrometer eyepiece (§ 60), direct the tele-

scope to the star a few minutes before its culmination,

note the chronometer time ^j when the star is on the point

of intersection of the wires (or any well defined point in

the eyepiece), and read the hour circle. Reverse the tele-

scope to the other side of the pier, note the time 6^ when
the star is at the same point of the eyepiece, and read the

hour circle. Let t^ and t^ be the hour circle readings in

the two positions, corrected for index error, if any ; let a

be the required azimuth correction; and let A^ be the

known chronometer correction [see § 152].

Neglecting the quantities which are eliminated by the

reversal, we have for the sidereal times when the star is in

the vertical plane of the polar axis,

Therefore, as with the transit instrument, § 98,

aA =a-(6^ + ^.6 -t{),

aA =a-(62 + ^0 - fg),

in which A is given by, (222) and (234),

sin (<^ T 8)A =
cos 8

the lower sign being for lower culmination. Solving for

a we find
cos 8

a = [a-\{e,-\-e,)-^e + i (t, + g] .

"'?°
• (3i3)

sin (^<p -F 0)

a is expressed in time: in arc, the azimuth correction

is 15 a.

If a is + , the south end of the axis requires to be moved

to the west; if — , to the east. This is readily done.

Direct the telescope to a distant terrestrial object nearly

in the horizon, make the movable micrometer wire vertical,



ADJUSTMENTS 219

and set it on the object. Next move the wire through

the distance a in the proper direction. This can be done

when the value of one revolution of the screw is known

[§ 61]. Shift the whole instrument in azimuth by the

proper screws until the micrometer wire is again on the

object. The vertical plane of the polar axis should now
coincide with the meridian.

If the value of a is large the observations should be

repeated. If a is less than 3*, it will cause no inconven-

ience and scarcely need be corrected.

Example. Wednesday, 1891 February 25. 51 Cephei

was observed at upper culmination with the 6-inch equa-

torial of the Detroit Observatory, as below. Determine

the azimuth correction. The value of A^ was + 14'" 36^0.

Telescope Hour circle Chronometer

West 23* 56™ 31' 6* 31"' 42»

East 24 42 6 35 29

The index correction of the hour circle was — 0^5.

Amer. Ephem., p. 303, a 6» 49™ 27'.5 8 + 87° 13'

K^i + ^2) 6 33 35.5 4> +42 17

A^ + 14 36.0 cos 8 8.6863

^(<i + <2) 23 58 36.0 sin(<^-8) 9.8490„

_ 8 .0 —^^— - 0.069
sm(^ — d)

The value of a was - 0.069 x - 8^0 = + 0\6 = + 9"
;

that is, the south end of the axis should be moved 9" west.

This was too small to require correction.

148. To adjust the deelination verniers. Direct the tele-

scope to a star, nearly in the zenith, whose declination is

known. Bring the star to the center of the eyepiece,

using a high power, and clamp the instrument in declina-

tion. Set the verniers so that they read the star's declina-

tion. They will then be in adjustment.
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149. To center the object glass. Imperfect images are

often due to the fact that the object glass is not properly

centered. To test this adjustment, remove the eyepiece

and hold a candle flame in such a position that the images

of the flame reflected from the surfaces of the object glass

can be seen through the flame. If the object glass is per-

fectly centered all the images should coincide when the

observer's eye and the center of the flame are in the axis

of the telescope. If they do not coincide, raise one side of

the object glass cell by the set screws until the coincidence

is perfect.

150. The magnifying power of a telescope is equal to the

focal length of the objective divided by the focal length

of the eyepiece. It is therefore different for different eye-

pieces on the same telescope, or for the same eyepiece on

different telescopes. The following method of determin-

ing it is simple, and abundantly accurate.

Focus the telescope on a distant object, and direct it in

the daytime to the bright sky. Hold a piece of thin, un-

glazed paper in front of the eyepiece at such a distance

that the bright disk formed on it is clearly defined. This

disk is the minified image of the object glass. Measure its

diameter by a finely divided scale held against the paper,

and measure the diameter of the object glass. It can be

shown that these diameters are to each other as the focal

lengths of the eyepiece and object glass. Their quotient

is therefore the magnifying power. Thus, for the equa-

torial mentioned above, the diameter of the object glass is

6.05 inches, and the diameter of the bright disk for a cer-

tain eyepiece is 0.08 inch. The magnifying power is,

therefore, 6.05 ^ 0.08 = 76.

A definite statement of the magnifying power to be used

in observing an object cannot be made. A higher power

can be used when the seeing is good, i.e.., when the images

in the telescope are steady and well defined, than when
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the seeing is poor. Lower powers must in general be used

with nebulae and comets. The very highest powers can be

used with stars and some of the planetary nebulae, if the

seeing is good. Further than this, the observer must select

that eyepiece which on trial gives the best results.

151. The field of view is the circular portion of the sky

which can be seen through the telescope at one time. Its

diameter is equal to the angle contained by two rays drawn
from the center of the object glass to the two extremities

of a diameter of the eyepiece. The diameter, expressed in

arc, is equal to 15 times the interval of time required by

an equatorial star to traverse it. This can be directly

observed.

152. The chronometer correction is quickly obtained, with

an accuracy sufficient for all ordinary uses of the equa-

torial, by the following method

:

Direct the telescope to a known star nearly in the

zenith, note the chronometer time 6^ when the star is on

the point of intersection of the wires, and read the hour

circle. Carry the telescope to the other side of the pier,

observe the star as before at the time 6^^ and read the hour

circle. Let the hour circle readings corrected for index

error be t^ and t^. We have, by (40),

a = ^, + A^ -
<j,

a = ^2 + '^^ - '2'

neglecting only very small quantities and those eliminated

by reversal. Therefore

d.e^a-\{6, + e,)+\(t, + Q. (314)

For many purposes an observation on one side of the

pier will suffice, and we have

A6 = a +
<i
- 6y (315)

Example. Ann Arbor, Wednesday, 1891 Feb. 25. The

following observation of Castor was made with the 6-inch
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equatorial, to determine an approximate value of the chro-

nometer correction.

Chronometer time, 0^ 7 5" 9*

Hour circle, t^ 23 52 3

Amer. Ephem., p. 327, a 7 27 39

Therefore, by (315), A<9 = + 14'« 33*.

153. To direct the telescope to an object whose right

ascension (a) and declination (S) are known, first deter-

mine whether the object is east or west of the meridian.

If the right ascension is greater than the sidereal time, it

is east ; if less, it is west. Generally, if the object is east,

the telescope should be west of the pier ; if the object is

west, the telescope should be east of the pier. Move the

telescope in declination till the declination circle reads 8.

To the reading of the chronometer add the chronometer

correction, and one or two minutes more for the time con-

sumed in setting. Subtract a from this sum and set off

the difference (which is the hour angle) on the hour circle.

When the chronometer indicates the time for which the

hour angle was computed, the object should be seen in the

finder. Move the telescope until the star is on the inter-

section of the finder cross-wires. The star should then be

visible near the center of the field of view of the (prin-

cipal) telescope.

Conversely, if an unknown star is seen in the telescope,

the chronometer time noted and the circle readings taken

:

then the declination circle reading is the star's declination

;

and the chronometer time of observation, plus the chro-

nometer correction, minus the hour circle reading, is its

right ascension.

These results are only approximate, of course, since the

instrument will never be in perfect adjustment, and the

star will not be seen in its true place, owing to the refrac-

tion, etc.
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DETERMINATION OF APPARENT PLACE OF AN OBJECT

154. By the method of micrometer transits. Select a

known * star, called a comparison star, whose right ascen-

sion and especially whose declination differ as little as

possible from that of the object. Revolve the filar microm-

eter [§ 60] until the star in its diurnal motion follows

along the micrometer wire. The wire in this position is

exactly east and west, or parallel to the equator, and the

reading of the position circle for this direction of the wires

is called the equator reading. If the object and comparison

star are in the vicinity of the pole, their diurnal circles

will be sharply curved, and in this case the equator read-

ing of the circle should, first of all, be determined from an

equatorial star. Direct the telescope just in advance of

the two objects. The diurnal motion will carry them across

the field. Note the chronometer times when they cross the

transverse wire or wires. The difference of these times

for the two objects is the difference of their right ascen-

sions. Also, when the first or preceding object approaches

the center of the field, move the whole system of wires

until the object follows along the fixed wire. When the

second or following object approaches the center of the

field, bisect it with the micrometer wire. Read the microm-

eter in this position, and also when the micrometer wire

is in coincidence with the fixed wire. The difference of

the two readings, multiplied by the value of a revolution

of the screw [§ 61], is the difference of the declinations of

the two objects.

Care should be taken to have the micrometer and fixed

wires exactly parallel,! and the transverse wire (or wires)

exactly perpendicular to the micrometer wire. To test the

* That is, a star whose accurate position is given in one or more of the

star catalogues.

t In good forms of the micrometer, an adjusting screw is provided for

bringing them into parallelism.
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relative positions of the two sets of wires, direct the tele-

scope to an equatorial star, adjust the micrometer wire so

that the star's diurnal motion will carry it across the field

in coincidence with the wire, and read both verniers of the

position circle. Rotate the system of wires, adjust the

transverse wire so that the star will cross the field in coin-

cidence with the wire, and read both verniers. The dif-

ference of the two position circle readings should be

exactly 90°.

Many observers prefer to observe only one coordinate at

a time. A good program to follow is, measure the differ-

ence of declination, revolve the micrometer 90° and ob-

serve the difference of right ascension, then revolve 90°

more and measure the difference of declination again.

In any case, the observations should be repeated several

times, and the mean of all the observations adopted. If

the object has a proper motion, the differences in right

ascension and declination are those corresponding to the

instant ivhen that object was observed : that is, the mean of

the chronometer times for the object, plus the chronometer

correction.

The mean place of the comparison star* will be given

for the epoch of the catalogue which contains it. Reduc-

ing this to the mean place for the beginning of the year

of observation by § 46, 47 or 52, thence to the apparent

place for the instant of observation by § 55, and applying

the micrometer differences to the apparent place, we obtain

the observed place of the object. This must be corrected

for refraction and parallax.

The refraction correction will be small, since the star

* If the star is a very bright one, it may be identified satisfactorily,

both in the sky and in the catalogue, by the methods of § 153. But, in

case it is faint, the observer should always compare a chart of the neigh-

boring stars, prepared from the catalogue, with that region of the sky,

making sure that the configurations of the stars on the chart and in the

sky agree.
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and object will be refracted nearly the same amount in

nearly the same direction. An equatorial is a fixed part

of an observatory, and tables of differential refractions in

right ascension and declination in every part of the sky

should be computed for the latitude of the observatory.

The corrections can then be taken from the tables very

quickly.

Until such tables are constructed, the corrections can

be computed by the following method: Let t^ be the

mean of the hour angles of the star and object, Bq the mean
of their declinations, and z the mean of their zenith dis-

tances. Substitute these values of t and B in (35), (36)

and (37), to determine L and z. The corrections to the

observed place will be given by *

8' — 8 tan tfy sin L cos (2 Sq + L)
Aa =

AS

15 sm'-(8o + L)

B'-S

COS^ 8n
(316)

(317)

in which B' — B is the declination of the object minus the

declination of the star expressed in seconds of arc, and k

is defined by
K = fx"BTy^". (318)

B, T and j have the same significance as in § 30, and their

values are given in Table I of the Appendix. The values

of log //." and X" are tabulated below with the argument z.

z log m" \" z log Ac" X"

0° 6.446 1.00 80° 6.395 1.10

45 6.444 1.00 82 6.370 1.15

60 6.440 1.01 83 6.351 1.18

70 6.433 1.03 84 6.323 1.21

75 6.422 1.05 85 6.285 1.24

* These equations are derived in Chauvenet^s Spherical and Practical

Astronomy, Vol. II, pp. 450-460.

Q
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It is only in the most refined measurements and in

extreme states of the weather that the barometer and

thermometer readings need be taken into account. With
comets it will scarcely ever be necessary, except when
they are very near the horizon.

If one or both of the bodies is in the solar system, and

at different distances from the observer, the observations

will require correction for parallax, by the methods ex-

plained in full in § 28.

Four-place tables are sufficient for computing the refrac-

tion and parallax corrections.

Example. Wednesday, 1890 July 23, the author made

the following observation of Coggia's comet with the

12-inch equatorial of the Lick Observatory. Required its

apparent place.

The comet was south of and preceding the 6th magni-

tude star No. 1518 Pulkowa Catalogue for 1855.0. The
reading of the position circle when the star followed

along the micrometer wire was 201°.35. The micrometer

readings when the micrometer and fixed wires coincided

were
19.947

.947

.947

Mean 19.947

When the comet was in the center of the field the fixed

wire was made to bisect it, and the chronometer time was

noted. When the star reached the center of the field

(nearly four minutes later) the micrometer wire was made

to bisect it, and the micrometer reading noted. In this

way the difference of the declinations was observed, as

below.
Chronometer Micrometer Remarks
16* 43'» 11* 22.954 Very windy

48 59 23.822 Very windy
54 2 24.550 Very windy

Means 16 48 44 23.775
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The micrometer was rotated 90° until the circle read

291°.35, and the chronometer times of transit over the two

wires noted, as below.

Comet Star Difference

17» O-Sl'J O™ 59'.2 17» 4'»44'.6 4'» 51».8 - 3" 52'.75

5 42.3 5 49.5 9 34.0 9 41.3 3 51.75

10 37.8* 10 46.1 14 28.0 14 36.3 3 50.20

23 3.5 23 11.5 26 49.8 26 58.1 3 46.45

27 39.5* 27 52.2 31 24.6 31 37.2 -3 45.05

Means 17» 13" 39* -3 49.24

The micrometer was rotated 90° further until it read

21°.35, and the difference of the declinations measured

again, as below,

Chronometer Micrometer Remarks

17* 34'" 22» 9.751 Very windy-

39 44 8,867 Very windy

48 40 7.545 Very windy

s 17 40 55 8.721

ings for coincidence of wires,

19.944

.946

.943

Mean 19.944

The value of one revolution of the screw is ^=14".058.

We shall combine the two differences of declination, thus

:

Chronometer

16ft 48'» 44"

17 40 55

Means 17 14 49

Diff. of decl.

- 3.828 i?

- 11.223 i2

- 7.525 i2=-l' 45".:

The chronometer time for the declinations is 1"* 10* greater

than that for the right ascensions. From the two measured

declinations it is found that the declination changed 2".3

in 1« 10*. Therefore, at 17" 13"* 39* the difference of decli-

nation was — 1' 43".5.

* The distance between the wires was changed intentionally.
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The mean place and proper motion of the comparison

star for 1855.0 given by the catalogue were

a = 9" 29™ 17'.57, 8 = + 40° 53' 16 '.1,

fi = - 0'.0022, fx'= + 0".008.

The mean place for 1890.0 was, by § 47,

a = 9* 31"* 29«.56, 8 = + 40° 43' 58".8
;

and the apparent place for sidereal time 1890 July 23*^ 11\

by § 55,
a' = 9* 31"* 28».90, 8' = + 40° 44' 4".2.

Therefore the observed place of the comet at 17'* 13"* 39* was

a = 9'* 27™ 39'.66, 8 = + 40° 42' 20".7.

The chronometer correction was — 1"* 19*. We have

Chronometer time, $> 17*^ 13™ 39'

Chronometer corn, A^ — 1 19

Sidereal time, d 17 12 20

Right ascension, a 9 27 40

Hour angle, t 7 44 40

The corrections for differential refraction corresponding

to this hour angle and declination, taken from the tables

constructed for the Lick Observatory, or computed from

(316) and (317), are

Aa = - 0'.04, A8 = - 0".6.

The corrections for parallax at the unit distance, i.e. the

parallax factors, taken from tables constructed for the Lick

Observatory, or computed from (92), (90) and (93), are

Aa = + O'.oQ, A8 = + 6' .1.

The comet's distance was 1.57, and therefore the required

corrections for parallax are

Aa = + 0'.36, AS = + 3 .9.



DETERMINATION OF APPARENT PLACE 229

Applying these corrections to the observed place we ob-

tain the following apparent place of the comet

:

Mt. Hamilton sid. time Apparent a Apparent 8

1890 July 23, 17* 13™ 39» 9* 27'" 39».98 + 40° 42' 24".0

155. By the method of direct micrometer measurement.

When the object whose position, (a", S"), is to be deter-

mined is comparatively near the comparison star, (a', 8'),

so that both are well within the field of view, their differ-

ences of right ascension and declination are conveniently

determined by direct micrometer measurement.

Let the micrometer wire be placed parallel to the equa-

tor, as before. By means of the driving clock keep the

telescope directed to the star and object so that the point

midway between them will be as nearly as possible in the

center of the field. Bisect the star's image with the fixed

wire and the object's image with the micrometer wire, and

note the chronometer time and the reading m of the microm-

eter. If m^ is the reading for coincidence of the wires,

and R the value of a revolution of the screw, then the

apparent difference AS of the declinations is given by

AS = (»i - m„)i?. (319)

Rotate the wires through 90°, bisect the two images as

before and note the time and the micrometer reading m'.

The apparent difference of the right ascensions is given by

Aa = (m' - nio) R sec i (8" + S')

.

(320)

This method cannot be used with safety near the pole

unless the instrument is in good adjustment and the differ-

ence of right ascension is small.

The apparent differences of right ascension and declina-

tion will require correction for differential refraction. The
corrections could be computed by differential formulae, but

an equally satisfactory method consists in computing the

absolute refractions in right ascension and declination for

the star and object, and taking their differences as the cor-
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rections to the observed intervals Aa and AS. The values

of the parallactic angles and zenith distances, q\ z' for

the star and q'\ z" for the object, may be taken from

general tables constructed for the point of observation, or

computed by (35), (36) and (37). These should be par-

tially checked by the formula

z" - 2' = Az = - COS 8' sin q' Aa - cos q' AS, (321)

formed by differentiating (30) and (41) and combining

the results with (31). The refraction r' for the star may
be computed by means of (95), (96) or (97), remembering

that z in these formulae is the apparent zenith distance.

Formula (96) will be sufficiently accurate, except in case

of observations made very near the horizon. The refrac-

tion r" for the object should now be found differentially.

The change Ar in refraction due to a change A2 in zenith

distance is obtained from (96), thus

:

A/- = _9836_ 2^ sin 1" ^z, (322)
460 + <

^ ^

in which Ar and A2 are expressed in terms of the same

unit. The refraction for the object will be given by

r" = r' + Ar. (323)

The corrections to the apparent places may be obtained

from (100) and (101), thus

:

da< = - r' sin 9' sec 8', rfS' =-7^ cosy', (324)

da" = - r" sin q" sec 8", rf8" = - r" cos q". (325)

Therefore, we shall have the true differences of right ascen-

sion and declination, as seen from the point of observation,

a" - a' = Aa + {da" - da'), (326)

8" - 8' = A8 + (rf8" - d8>), (327)

from which the values of a" and B" may be obtained.

If the object is in the solar system, it will further require

correction for parallax.
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Example. Lick Observatory, Friday, 1898 Nov. 11.

12-inch equatorial. Observer, W. J. Hussey. The differ-

ences of right ascension and declination of the minor planet

Eros and the star DM. — 4°.5413 were measured directly

with the micrometer, to determine the apparent place of

the planet.

The mean of five measures of difference of declination

was, (the planet being north of the star),

m = 55^007 at (sidereal) chronometer time 22* 48™ 21».0.

The mean of ten measures of difference of right ascension

was, (the planet being west of the star),

m' — 67^180 at chronometer time 22* 52" 22».7.

The mean of five additional measures of difference of

declination was

m = 55^.228 at chronometer time 22* .56"» 27«.2.

The coincidence of the wires was at 46'".650 ; the value of

one revolution of the screw is 14".058 ; the chronometer

correction was + 2'" 53^7 ; and the apparent place of the

star for the instant of observation was [from Karlsruhe

Beohachtungeri] ,

a' = 21* IS™ 10«.63, 8' = - 4° 6' 10".9.

The observations for determining A8 will be combined

as follows, the reductions — VA and — 0'".001 being applied

so that the declination observations will refer to the same

instant as the right ascension observations.

Chronometer, 22* 48"' 2K0 m, 55'.007

22 56 27.2 55 .228

Means, 22 52 24.1 55 .118

Reductions, -1.4 - .001

22 52 22.7

Mo,

A8,

55.117

46 .650

+ 8.467 i2=+119".04

Chronometer, 22 52 22.7 m', 67 .180

Chron. corr., + 2 53.7 »"0' 46 .650

Sid. time, 6, 22 55 16.4 Aa, -20.530 i? sec (-4° 5.

i

Aa, - 289 ".36
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Applying these values of Aa and AS to the star's place we

have the approximate position of the planet,

a" = 2P 12'» 51».3, 8" = - 4° 4' 12".

The data for solving (35), (36) and (37) are

<^= 37° 20' 26" 6= 22* 55'»16».4

t' =+ 1»42'» 6« <" = + 1 42 25

t> = + 25° 31' 30" t« = + 25° 36' 15"

8' = - 4 6 11 8" = - 4 4 12

The quantities obtained from the solution are

q' = 27° 33' 50" q" = 27° 38' 46"

z' = 47 45 42 z" = 47 46 10

The value of z" — z' = Az = + 28" agrees exactly with

that obtained from (321).

The mean value of the refraction at true zenith distance

z' = 47° 46' is about 1'. Solving (96), (322) and (323)

for z = 47° 45' and As = + 28", assuming b = 25.8 inches

and t = + 55° as the average for observing weather at

that season of the year, we obtain

r' = 54".2,

r" = 54 .2 + 0".015 = 54".215.

Substituting these in (324) and (325) we obtain

da' = - 25".14, dS' = - 48".05,

da" = - 25 .22, rf8" = - 48 .03

;

and, therefore, from (326) and (327),

a" - a' = - 289".36 - 0".08 = - 289".44 = - 19«.30,

8" - 8' = + 119 .04 + .02 = + 119 .06 = + 1' 59".l;

whence
a" = 21» 12» 50».33, 8 = - 4° 4' 11".8.

The distance A of the planet from the earth being 1.225

units, the parallax corrections taken from general tables

or computed from (89), (90) and (91), are + 0M7 and
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+ .4".7. The apparent place of the planet referred to the

center of the earth was therefore

Mt. Hamilton sidereal time Apparent a Apparent 8

1898 Nov. 11, 22» SS" 16».4 2P 12"' 50'.50 - 4° 4' 7".l

DETERMINATION OF POSITION ANGLE AND DISTANCE

156. The relative positions of two objects close together

are conveniently expressed in terms of position angle and

distance. The position angle, p, of one star, B, with refer-

ence to another star. A, is the angle which the great circle

passing through the two objects makes with the hour

circle passing through A, reckoned from the north toward

the east through 360°. Their distance, s, is the length of

the arc of the great circle joining them.

To determine the position angle, revolve the micrometer

until one of the stars, by its diurnal motion, follows along

the micrometer wire, and note the reading P^ of the posi-

tion circle. Keeping the telescope directed upon the stars

by means of the driving clock, revolve the micrometer

until the micrometer wire passes through the two stars,

and note the circle reading P. The position angle re-

quired is

p = P-(Po±90°). (328)

To determine the distance, revolve the micrometer to

the circle reading P ± 90°. Bisect one of the stars with

the fixed wire by moving the whole system of wires, then

bisect the other star with the micrometer wire, and note

the reading m of the micrometer. If mo is the reading of

the micrometer when the two wires coincide, and JR, the

value of a revolution of the screw, the required distance is

s=(m-Tno)R. (329)

In very accurate measurements bisect the two stars as

above, and take the reading m. Move the micrometer

wire to the other side of the fixed wire, bisect the stars
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with the wires in that order, and take the reading w!

,

The distance is now given by

s = \ (m' - m) R. (330)

In this way several systematic and personal errors are

eliminated, partially at least. This method is called the

method of double distances.

The values of s and p will be affected by refraction;

but in the case of double stars, to which the method is

especially applied, the correction for refraction may usually

be neglected.

If the distance between the two stars is large, the tele-

scope should be directed so that the two stars will fall on

opposite sides of the center of the field, and at equal dis-

tances from the center. In this case the measured position

angle is the angle between the arc joining the two stars,

and the hour circle passing through the middle point of

that arc. Let p' and s' be the observed angle and dis-

tance. Let their values corrected for refraction be p and

s. Let z and q be determined for the point midway be-

tween the two stars from (35), (36) and (37), and let k be

defined as in (318). It can be shown * that

p = p' — K cosec 1" [tan^ z cos (p' — q) sin (p' — q)
— tanzsin^tan^ (S + S')], (331)

s = si + SK [tan2 z cos2 (jo' - ?) + 1]

.

(332)

This value of p, referring to the point midway between

the two stars, may readily be converted into the position

angle of each star with reference to the other star. Let

*S", in the position a', S', represent the western star ; S'\

in the position a", S", the eastern star ; M the point mid-

way between them ; and P the pole of the equator. Let

p' be the position angle of the eastern star with reference

to the western, and 1^0° +p" the position angle of the

* See CliauveneVs Sph. and Prac. Astronomy, Vol. II, pp. 450-459.
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western star with reference to the eastern. In practice,

the declination of one star will always be known ; and if

the declination of the other is unknown, its value may be

found with sufficient accuracy from equation (338) below.

Let 8q = ^{B" + B'y. Without sensible error, we may
assume Sq as the declination of the point Tlif defined above.

Then, from the triangles PS'31 and PS"M we can write

lOhauvenet'B Sph. Trig., § 70, (N)],

tan;,' = ^ 'y.
^ , . , (333)

^ cos \ s COS p + sin \ s tan Og

tani>" = '^"^.
, , ;i

> (334)
^ cos \ s COSp — sm \ s tan dg

which determine p' and p" . Their values will differ very

little from p, unless the stars are very near the pole.

It is frequently required to convert position angle and

distance into the corresponding differences of right ascen-

sion and declination. From the "triangle PS'S" defined

above, we may write \_CTiauvenet''s Sph. Trig., (44)],

sin \ (a" — a') = sin | s sin | (;/' + p') sec S,,, (335)

sin I (8" - S') = sin ^ s cos i (p" + p') sec | (a" - a'), (336)

which solve the problem. If the stars are at some distance

from the pole, we may safely substitute p for ^(^p" +J»')
in these equations.

If the stars are not far from the equator, or if s is rela-

tively small, or if only moderate accuracy is required,

these equations may be written,

a" — a' = ssin/» sec 8q, (337)

8"- 8' =scosj9. (338)

Example. 36-inch equatorial. Lick Observatory, Thurs-

day night, 1898 November 17. Observer, W. J. Hussey.

The position angle and distance of the faint companion

of Sirius with reference to the principal component were

measured as below. The distance was determined by the
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method of double distances. The equator reading of the

position circle was 111°. 7, and the value of a revolution

of the micrometer screw is 9".907.

P, 185°.6 m', 56'- .199 m, 55'.344

184.7 .182 .350

184.3 .180 .336

184.7 .178 .342

182.2 .193 .336

185.0

184.3
Mean m',

in,

56 .186

55 .342

Mean m, 55 .342

Mean P, 184 .4

P„ 111 .7

\ (m' - m),

R,

O*- .432

9".907

72.7

+ 90.0
s, 4".18

p, 162°.7

The correction for refraction is not appreciable.

THE RING MICROMETER

157. This consists of a narrow metal ring, one or both

of its edges turned exactly circular, attached to a thin

piece of glass in the focal plane of an eyepiece. When
the eyepiece is put on the telescope and focused, the ring

is also in the focal plane of the object glass.

If the times of transit of two stars over the edges of the

ring are observed, the differences of their right ascensions

and declinations can be found. But results obtained in

this way can be regarded as only approximately correct,

and the ring micrometer should never be used with an

equatorial telescope unless, in case of great haste, there is

not time to attach the filar micrometer and adjust its wires

by the diurnal motion. The principal advantage of the

ring micrometer is that it can be used with an instrument

mounted in altitude and azimuth as well as with an equa-

torial, whereas a filar micrometer cannot.

158. To find the radius of the ring. Select two stare

whose declinations are accurately known, the difference



RING MICROMETER 237

of whose declinations is a little less than the diameter of

the ring, and whose right ascensions do not differ more

than three or four minutes. Two stars to fulfil these con-

ditions can always be found in the Pleiades. When these

stars are nearly on the observer's meridian, observe their

transits over the edge of the ring.

In Fig. 28 let ODD'C represent the ring ; CD the path

of one star (a, 5), and t-^ and t^ the observed sidereal times

of its transit over C and I) ; CD' the

path of the other star (a', 8'), and t-^

and t^ the times of its transit over

C and D' . Draw MM' perpendicu-

lar to CD and CD' . Draw the radii

CO and C 0, and let r represent their

value in seconds of arc. If we put

COM = y, COM' = y,
Fig. 28

we can write

OM = r COS y, CM = r sin y,

OM' — r cos y', CM' = r sin y'

;

and therefore

MM' = r (cos y '+ cos y) = 2 r cos ^ (y ' + y) cos i (y ' — y)

,

(339)

CM'+ CM = r (sin y' + sin y) = 2 r sin \ (y' + y) cos \ (y' - y), (340)

CM'-CM = r (sin y'- sin y) = 2 r cos \ (y' + y) sin \ (y' - y). (341)

We have

MM' = 8' - 8, CM = ii^ (t, - <i)
cos 8, CM' = ^ (t^' - t^') cos 8';

and if we put
|(y'+y) = ^, Hy-y)=5>

we can write

^ . CM'+CM ^ (t, ' - </) cos 8' + -y (<2 - h) cos 8
*^"^= MM' = r^s ' ^^ ^

tan B = ^'^' ~ ^^ = "^ ^^'' ~ ^'^ ''"' ^' ~ ^'^ ^^' ~ *'^ ''"^ ^
, (343)

(344)

MM' 8' -8

CM' - CM ¥(V-'i ') cos 8' -¥(^2-- ?j)cos 8

MM'

MM'

8'--8

8' -8
2 cos A cos B 2(cos ^ cos B
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The apparent distance between the stars is affected by

refraction. Since the observations are made near the

meridian, the refraction in right ascension can be neg-

lected, and it will be sufficiently accurate to consider that

its effect upon the difference of the declinations is equal

to the difference of refraction in zenith distance of the

stars when they are on the meridian. The difference of

the declinations furnished by the star catalogues requires

to be decreased numerically by the difference of the re-

fractions before substituting in the above equations. The

difference of the refractions may be readily obtained with

the assistance of the table in § 111, based upon equation

(280), or from the table of mean refractions, Appendix,

Table II.

Example. Friday, 1889 Jan. 25. The following times

of transit of 23 Tauri and 27 Tauri over the outer edge of

the ring micrometer of the 12|-inch equatorial of the

Detroit Observatory were noted, to determine the radius

of the ring.

23 Tauri 27 Taun
t^ = 3* SO"* 41».5, </ = 3» 33™ 33».5,

<2 = 3 30 63 .0, </ = 3 33 41 .0.

The mean places of these stars for 1850.0 are given in

NewcomFs Standard Stars. Reducing them to the mean

place for 1889.0 by § 52, and thence to the apparent place

at the instant of observation by § 55, (5), we obtain

8 = 23° 36' 4".13, 8' = 23° 42' 45".40.

The zenith distance of the stars is about 18° and the

difference of their zenith distances is about 7'. Entering

the table in § 111 with i (z' — z") = 3'.5 and z = 18°, one-

half the difference of the refractions is 0".07, or the whole

difference is 0".14. Therefore the apparent difference of

declination of the stars is

S' - 8 = 401".13.
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From (342) and (348) we find

.4 = 18°r34", 5 = 3° 55' 37";

and then, from (344)
r = 211".4.

The mean value of r from nine complete sets of

transits is

r = 210".7 ± 0".18.

159. To determine the difference of the right ascensions

and declinations of two stars. Observe the transits over

the edge of the ring, as in § 158. Using the notation of

§ 158, the difference of the right ascensions is given by

a' - a = i (</ + ?2') - K^ + '2) • (345)

Letting 0M= d, and OM' = d' we can write

sin y = -^^^ (t, - to, sin y' = '1^1 Q' - t,'), (346)

d = r cos y, d' — r cos y'. (347)

The difference of the declinations is given by

8'-8 = d' ±d. (348)

The lower sign is used if the stars are observed on the

same side of the center of the ring. Equations (347) do

not determine the signs of d and d', but there will never

be any ambiguity if the observer notes the positions of the

two stars with reference to the center of the ring.

Differences obtained in this way are slightly in error on

account of refraction ; on account of the fact that the paths

of the stars are arcs and not chords of the circle (except

for equatorial stars) ; and on account of the proper motion

of one of the bodies (if it have a proper motion). But as

stated above, the ring micrometer should not be used on

an equatorial telescope when exact measurements are

required; so that the corrections for these errors will

seldom be justified, and we shall not consider them here.
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Example. Saturday, 1888 Sept. 8. The position of

Comet c 1888 was compared with that of the star 13*, 1197

in Weisae's JBesseVs Catalogue, by observing the transits of

the star and comet over the inner edge of the ring microm-

eter of the 12^-inch equatorial of the Detroit Observatory.

The times of transit were

Star Comet

?i
=: IQ'* IS™ 34M, </ = 19» 19™ 12».6,

<2 = 19 18 50 .0, V = 19 19 31 .1.

The image of the star was north of the center and that of

the comet was south. The radius of the ring is 171".6.

The apparent place of the star was

a = 13* 56'» 3«.06, 8 = + 31° 13' 49".6.

The declination of the comet was approximately -f- 31° 18'.

Substituting in (345) we find

a' - a = + O"* 39».80.

The solution of (346) and (347) is here given.

logi/ 0.87506 log^ 0.87506

cos 8 9.93201 cos 8' 9.93169

a.c. log r 7.76548 a.c. log r 7.76548

log02-'i) 1.20140 logOa'-V) 1-26717

siny 9.77395 siny' 9.83940

cosy 9.90542 cosy 9.85912

logr 2.23452 logr 2.23452

d 138".0 d' 124".l

8'-8 = d' + d= + 262".l = + 4' 22".l

These approximate values of the apparent differences

a' — a and B' — 8 correspond to the Ann Arbor sidereal

time 1888 Sept. 8, 19^* 19'" 22^
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A. Hints on Computing

The numerical calculations required in the problems of

practical astronomy are generally a source of discour-

agement to the beginner, even though he is a skilful

mathematician. Practice in making extensive series of

computations, however, very soon suggests to him various

devices for avoiding much of the labor. Every computer

acquires methods peculiarly his own ; yet the following

hints will possibly be useful to many.

Only those logarithmic tables should be employed which

contain the auxiliary tables of proportional parts on the

margins of the pages, excepting possibly three-place and

four-place tables. They enable the computer to make
nearly all the interpolations mentally ; and the use of any

other tables, for any purpose whatever, cannot be recom-

mended.

The following are recommended

:

Bruhns's or Vega's seven-place tables.

Bremiker's six-place tables.

Hussey's, NewcornVs or Becker's five-place tables.

ZecKs addition and subtraction logarithmic tables.*

Barlow's tables of squares, square-roots, etc.

CrelWs multiplication and division tables.

If extensive computations are made with seven-place

tables and the interpolations carried to hundredths of sec-

* Bremiker''s tables contain Gauss's addition and subtraction loga-

rithmic tables to six places. Hussey''s and Becker''s contain Zech''s to

five places, and N'ewcomb''s contain Gaiiss''s to five places.

B 241
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onds, the results are usually accurate within a tenth of a

second. If six-place tables are used and the interpolations

carried to tenths of seconds, the results are usually accu-

rate within a second. If five-place tables are employed

and the interpolations carried to seconds or to hundredths

of minutes, the results are usually accurate within five

seconds.

First of all, an outline of the whole solution should be

prepared by writing in a vertical column the symbols of

all the functions that will be used. Those should be

placed adjacent to each other which are to be combined,

as shown by the formulae. If a number of similar solu-

tions for different values of the variable or variables are to

be made, a vertical column should be arranged for each on

the right of the column of functions, which thus serves for

all, and the computations in the several columns should be

carried on simultaneously. If the solutions are made for

equidistant values of the variable or variables, this method

affords a valuable check on the accuracy of the results*

since all the quantities which are in the same horizontal

line should differ systematically from each other as we go

from the first column to the last. By subtracting the

result in each column from the corresponding result in

the next column to the right, any error will be detected

very quickly by the fact that the differences will not vary

properly. This method is called the method of differences.

It will not detect systematic errors : that is, errors affect-

ing all the columns alike.

If the sine, cosine, tangent, etc., of the same angle are

required, they should all be taken from the tables at one

opening. Avoid turning twice to the same angle in the same

solution. The interpolations can be checked by subtract-

ing mentally the last two figures of the cosine from those

of the sine and comparing the result with the last two

places of the tangent ; and similarly in other cases.

The tangent of an angle always varies more rapidly
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than its sine or cosine, and for this reason the valne of an

angle should be taken from the tables by means of its tan-

gent if great accuracy is required.

Many of the operations can be performed mentally,

thereby saving much time. Thus, two numbers can be

added or subtracted mentally from left to rights or a num-

ber multiplied or divided by two from left to right, and

the result held in mind while we turn to the tables and

take out the proper angle or function. This has been

done very largely in the solutions of the examples in this

book. Just how far the student should carry the method

depends upon the individual. The beginner will find it

perplexing and a fruitful source of error, but after some

practice he can perform the operations quickly and accu-

rately. It should be said that many experienced com-

puters prefer to set down the results in the usual way.

If there are several factors in the numerator or denomi-

nator of an expression to be evaluated, do not add the

logarithms in the numerator together, those of the de-

nominator together, and take the difference ; but form the

arithmetical complement of each logarithm in the denomi-

nator mentally by subtracting it from 10, from left to right,

and set down the result in the proper place. All the

factors can then be combined by one addition.

When a constant quantity is to be used several times, it

should be written on the margin of a slip of paper and held

over the quantities with which it is to be combined.

If two quantities are to be combined which are separated

by one or more lines, hold a pencil or slip of paper over the

intervening quantities and the two can then be combined

as conveniently as if they were adjacent.

If two quantities are given by their logarithms, and the

logarithm of their sum or difference is required, it should

be found by means of addition and subtraction logarithmic

tables. The result will be obtained more quickly and

accurately than by means of the ordinary tables.
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Whenever the formulsB furnish checks on the accuracy

of the solution, they should generally be applied. The ex-

perienced computer usually detects an error very quickly.

If the trigonometrical function or other logarithmic

function is negative, write the subscript „ after it.

Do not use negative characteristics. Increase them by 10

if they are naturally negative.

The example in § 4 will illustrate many of these methods.

First write down the two columns of functions, as the

outline of the solution of (12), (13), (14) and the check

equation (9). The values of ^, z and A are inserted.

From the tables tan z and sin z are found and written oppo-

site their symbols; and likewise cos J., tan^ and sin J..

The sum of tan z and cos A is tan M. Add them mentally,

enter the tables and take out M. Take out sinil^f at

once. Subtract il^f from ^, mentally, find sec (^ — M^ and

tan ((f)- M). The value of sec ((fi-M} is 10 -cos {(f>-M).

Add the three logarithms to find tan t. Determine t from

the tables and take cos it and cosec^ out. The sum of

tan (^ — iHf) and cos t is tan S. Add them mentally and

take h and sec S from the tables. The sum of the last four

logarithms is log 1. It should not differ more than one or

two units of the last place from zero or ten.

The printed solution contains every figure that need be

written down. But possibly the beginner should write

down tan ilf, <^ — If and tan h.

B. Interpolation Formula

The Ephemeris tabulates the values of any required

function corresponding to equidistant values of the time.

If the value of the function for any intermediate date is

desired, it is sometimes determined most conveniently by

means of a general interpolation formula.

Let T be the date in the Ephemeris nearest the instant

for which the value of the function is required, and let

o) be the tabular interval of time. Then the adjacent dates
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in the Ephemeris may be represented as in the first column

of the following table, and the corresponding values of the

function as in the second column. Subtracting each value

Argument Fonotion 1st DifF. 2dDiff. SdDiff. 4th Diff. 5th Diff. 6th Diff.

r - 3 0) /(r-3a,)

T-2w /(r-2a,)
am

b„

T- 0) f{T- o>)

a,

b, d,

^/

T fiT) [«] h M d \A /

a> c' e'

T + 0) /(T+ o>)

a"
h'

c"
d<

r+2a> /(7'+2co)
n"l

b"

r + 3a) /(r+3o))

of the function from the next following value, we obtain

the " 1st differences " in column three. Subtracting each

1st difference from the next following, we obtain the 2d

differences in column four ; and so on, for the differences

of higher orders. Lastly, the quantities [a] = | (a., + «')'

[c] = 1 (c, -f c') and [e] = i (e, + e') are inserted in the

same horizontal line as T. Let the instant for which the

value of the function is wanted be represented by T + t.

Let n be the ratio of t and the tabular interval (o ; i.e.^

n = t/co, OT t = ncd. The value of the function required is

n(»^-l)(.^-4)
..^

2-3. 4-5 '-
-

Example. Determine from the American Ephemeris,

page 219, the apparent declination of Mercury at Green-

wich mean time 1899 April 2<^ IQ^ 0'".
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The epoch T is April 3*^.0, the tabular interval © is 24'*,

and ^ is — S''. Therefore, n = — \. The functions and

differences are as below:

Argmnent Fniiction a h c d e

IVIarch 31<«.0

April 1 .0

2.0

+ 13°16'34".4

13 22 29 .6

13 24 29 .6

+5'55".2

+ 2 .0

-1 54 .4

-3'55".2

-3 54 .4

+0".8

+3 .2'
+ 2".4

+ 0".3

3.0 13 22 35 ,2 [-3 50 .0] -3 51 .2 [+4 .6] + 2 .7 [+0 .1]

4.0

5.0

6.0

13 16 49 .6

13 7 18 .7

+ 12 54 11 .0

-6 45 .6

-9 30 .9

-13 7 .7

-3 45 .3

-3 36 .8

+5 .9

+ 8 .6

+2 .6

-0 .1

The quantities to be taken from this table are all in-

cluded, with April 3*^.0, between the two horizontal lines.

Substituting these values and n = — \vsi the above equa-

tion we obtain the following values of the individual

terms, and their sum, respectively

:

+ 13° 22' 85".2

+ 1 16 .7

— 12 .8

+ .2

— .1

.0

f(^T + t) +13°23'39".2

It is often required to determine by interpolation the

value of a function for a date midway between two tabu-

lar dates. The required value is determined as follows

:

From the arithmetical mean of the two values of the

function corresponding to the two tabular dates, subtract

one-eighth of the arithmetical mean of the second differ-
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ences found on the same horizontal lines as the two dates,

and add three one hundred and twenty-eighths of the

arithmetical mean of the fourth differences found on the

same horizontal lines.

Example. Determine the apparent declination of Mer-

cury at Greenwich mean time 1899 April Z'^.b.

From the above data

\ (13° 22' 35".2 + 13° 10 49".6) = + 13° 19' 42".4

- i -U- 3 51 .2 - 3 45 .3) = + 28 .5

+ Th-\{+ 2.7+ 2.6)= OjO

App. 8, 1899 April 2>^.b = + 13° 20' 10".9

C. Combination and Comparison of Observations

Formulce resulting from the Method of Least Squares

1. Direct observations of a quantity : n separate results,

?Wj, Wig, ••• »w„ of equal weight.

fwi"!
*

Most probable value of quantity, z = ^=-^.

Residuals, z — m^ = i\, z — m.2 — i\^ ••• z — mn = r».

Probable error of z, r. = ± 0.6745 * /
M

\n(7i-l)

Probable error of a single observation, r = ± 0.6745.. / L^'^'J
,

\n — 1

2. Direct observations of a quantity : n separate results,

Wj, m^, • w„ of unequal weights, jOj, p^, •"Pn-

Most probable value of quantity,
iP']

Probable error of z, r„ = ± 0.6745 \/r4?^[rf(n-l)

1Probable error of an obs'n of weight unity, r = ± 0.6745 -i/^^^-

—

^

* The symbols [ ] signify the sum of all similar quantities. Thus

[m]=m\ + m2 -f ••• + m„.
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Weight of 2, P =Lp1-

Relation of weights to probable errors, p, i/)^ : ••• : : — :
—

r,2 r„'

3. \i Z = az^ ±hz^± ••• kz^^ and the probable errors and

weights of Zj, z^,— 2„ are r^, r^, • r„ and p^, p^, ••• jt?„, then

the probable error and weight of Z are given by

r = ± V(ar,)2 + (6r2)2+...(fcr„)2,

1 = ^ + *! + ...^.

P Px P2 Pn

4. In general, if Z=f(^z^, z^, "'O' the probable error

of Zis

5. Direct observations of a function of a quantity z:

the separate results, Wj, m^, ••• w„ of equal weight, and

the form of the function, az. The observation equations

are
OjZ + TWi = 0,

OgZ + n»2 = 0,

a„z + m„ = 0.

The most probable value of z and its probable error are

^^_[am] ._^nR7^.^/ M_
r T • =±0.6745^L ^ ^ ^_[aa] \ [aa] (n — 1)

If the observations are of unequal weights, multiply the

observation equations through by the square roots of their

respective weights, and proceed as before.

6. Direct observations of a function of two quantities,

w and z : the separate results, Wj, m^, . . . m^ of equal

weights, and the form of the function, aw + hz. The ob-

servation equations are

a^ro + ft,2 + T/ij = 0,

a^w + fto2 + wJj = 0,

OnW + 6„z + ?«„ = 0.
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The normal equations are

laa] w + [aU] z + {am] = 0,

[ab'] w + [pb'] z + [bm] = 0.

Let

\bb-] -M [_ab-\ = [W.l], [bm-] - ffl [am] = [bm.Y\.

Then the most probable values of w and z are given by

\bb.\y

[ah'] ram"!

[aaj [aaj

The weights of w and z are

;7^ = [ift.l]
, ;)„ = -LlJ [aa]

.

The probable error of a single observation (of weight

unity) is

r=± 0.6745Ji!^;

and the probable errors of w and z are

r r

If the observations are of unequal weights, multiply the

observation equations through by the square roots of their

respective weights, and proceed as before.

7. Direct observations of a function of three quantities,

a;, y and z : the separate results, Wj, Wg, . . . w„ of equal

weight, and the form of the function, ax -\- by + cz. The
observation equations are

a-^x + b^y + CjZ + m, = 0,

a^t: + b^ + cf, + m^ = 0,

a„x + b„y + c„2 + m„ = 0.

The normal equations are

[aa] z + [rt/v] y + [^acl z + [am] = 0,

[ai] X + [6i] ?/ + [6c] 2 + [5m] = 0,

[ac] X + [6c] y + [cc] z + [cm] = 0.
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m [a&]

[6m]
[a6]

laa}

[cc]
[ac]

[a6] = [ftft.l],

[am] = [6??i.l],

M [ab]

[«c]

[^^] = [^c.l],

[ac] = [cc.l], [cm] — ^—4[«'w] = [cm.l],

[6c.l]

[aa]

[6c.l]
[cc.l] - p;^ [6c.l] = [CC.2], [cm.l] --^ [6m.l] = [cm.2].

Then the most probable values of x, y and z are given by

[cm.2]
^-

[CC.2]'

[6cJ] [6ml]
y~ ihb.iy [66.1]'

[ail [acl \am\
a^ = — ?—4 y — T—T^ — p—4-

[aa] [aa] [aa]

The weights of a;, «/ and 2 are given by

Pz = [cc.2],

_[cc.2] [66.1]

^'-[3^;T66r'^""^'

[cc.l]„ = [cc]-M[6e].

in which

The probable error of a single observation (of weight

unity) is

r=± 0.6745 ^/EI,

and the probable errors of a;, y and 2 are

Vp^ ^ \/pI

If the observations are of unequal weights multiply the

observation equations through by the square roots of their

respective weights, and proceed as before.
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D. Objects for the Telescope

Besides the moon, the planets and the Milky Way, the

objects in the following list will be of interest to the stu-

dent. Fuller descriptions of them, with many valuable

hints on the use of the telescope, can be found in Webb's

Celestial Objects for Common Telescopes, which is an excel-

lent guide for the observer. Every student should provide

himself with a good star atlas. Klein's Star Atlas, or Heis's

Atlas Coelestis is recommended.

o, 1900.0 5, 1900.0 Object: description! remarks

0» 37-" .3 + 40° 43' The Great Nebula in Andromeda. One of

the most interesting in the sky, large,

2J° by 4°, easily visible to the naked eye.

A small companion nebula lies 22' south.

53 .4 + 81 20 U Cephei, variable, 7'".1 to 9"».2, period 2'^.d.

1 18 .9 + 67 36 \p Cassiopeice, triple, Ai'^.5, JS9'», CIO"'.

AB = 30", BC = 3".

1 22 .6 + 88 46 a Ursoe Minoris or Polaris, the standard 2"*

star ; a 9"* companion at s = 18". 5.

1 48 .0 + 18 48 7 Arietis, double, 4™. 5 and 5"*, p = 179°,

s = 8".

y Andromedce, double, 3™. 5 and 5™. 5, p —1 57 .7 + 41 51

63°, s = 10". The S^.S is also double.

but close and difficult even for the largest

telescopes.

2 12 .0 + 56 41 Cluster in Perseus. A magnificent object

with a low power. Another fine cluster

3 minutes east.

2 14 .3 - 3 26 Ceti, interesting variable, irregular, 1"'.7

to 9'».5, period about 331<*.

3 1 .7 + 40 34 /3 Persei (Algol), interesting variable, 2"».3

to S'-.S, period 2'* 20* 48"' 55'.

3 40 .2 + 23 27 Nebula in the Pleiades, very faint and diffi-

cult, Merope in its north extremity.

4 7 .6 + 50 59 Cluster in Perseus, good with low power.
4 9 .6 -13 Planetary nebiila in Eridanus, circular, 12""

star in center.

4 30 .2 + 16 19 a Tauri (Aldebaran), l" star, red.

5 9 .3 + 45 54 o Aurigce (Capella), 1"» star.

5 9 .7 - 8 19 /3 Orionis {Rigel), double, 1"" and 9"*, s =
9". 5. The 9™ is a close double, very dif-

ficult even with the largest instruments.

5 28 .6 + 21 57 Nebula in Taurus large, faint, oblong.
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a, 1900.0 5, 1900.0 Object! description! remarks

5» 30"> .4 - 5° 27' The Great Nebula in Orion, one of the

most interesting nebulae in tlie sky,

about 3° by 5° in size. Near its densest

part is the multiple star e Orionis, called

the Trapezium. The spectrum of the

nebula indicates a gaseous composition.

5 35 .7 - 2 f Orionis, triple, A S™, J56'».5, CIO", AB =
2".5, AC^6T'.

6 2 .7 + 24 21 Cluster in Gemini, fine field with low power.
6 37 .4 + 59 33 12 Lyncis, triple, A 6"*, S6'».5, C7»».5, AB =

1".5, ^C = 8".6.

6 40 .7 - 16 34 o Canis Majoris (Sirius), the brightest star

in the sky. A close 10 mag. companion is

now (1899) difficult in powerful tele-

scopes.

7 14 .1 + 22 10 5 Geminorum, double, one yellow 3'».5, the

other red 8"', p = 205°, s = 7".

7 28 .2 + 32 6 a Geminorum (Castor), fine double, 3"* and
3'».5, p = 226°, s = 5".7.

7 34 .1 + 5 29 a Canis Minoris (Procyon) 1™, with 13™

companion discovered in 1896, difficult

with large instruments. At discovery,

j9 = 320°, s = 4".7.

8 34 .5 + 20 17 Cluster in Cancer (Prcesepe), fine field with

low power.

8 45 .7 + 12 10 Cluster in Cancer, about 200 stars, 9«to 15'*.

9 47 .2 + 69 36 Nehulm in Ursa Major, two nebulae, 30'

apart, preceding one brighter with bright

nucleus.

10 14 .4 + 20 21 7 Leonis, fine double, 2"» and 3". 5. In 1897,

j3 = 115°, s = 3".8.

10 19 .9 - 17 39 Planetary Nebula in Hydra, fairly bright.

11 12 .5 + 59 19 Nebula in Ursa Major, small, bright, with

nucleus.

11 47 .7 + 37 33 Nebula in Ursa Major, bright, 3' to 4' in

diameter.

12 5 .0 + 19 6 Cluster in Coma Berenices, globular, bright,

well resolved in large telescopes.

12 34 .8 - 11 4 Nebula in Virgo, elliptical, 30" by 5', fine

field with low power.

12 36 .6 - 54 7 Virginis, double, 4™ and 4'». In 1898,

p = 330°, s = 6".

13 19 .9 + 55 27 f Ursoe Majoris, fine double, 3"» and 5™,

s = 14".

Cluster in Canes Venatici, bright, globular,13 37 .5 + 28 52

probably more than 1,000 stars.

U 11 .1 + 19 43 a Bootis (Arcturus), l" star, yellow.
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«, 1900.0 5, 1900.0 Object! description! remarks

14» 40ra .6 + 27° 30' e Bootis, beautiful double, 3™ yellow and 7"

blue, s = 3", p = 328°.

15 14 .1 + 32 1 U Coronce, variable, 7"».5 to 8'».9, period 3<^

10» 31"'.

16 23 .3 -26 13 a Scorpii, double, 1"» and 7™, s = 3".

16 37 .5 + 31 47 f Herculis, double, 3"» and 6™, s = 0".6 in

1899, period about 35 years, now (1899)

very diflBcult in large instruments.

16 38 .1 + 36 39 The Cluster in Hercules, globular, one of

the finest of its kind. [eter.

16 40 .3 + 23 59 Nebula in Hercules, planetary, 8" in diam-

17 10 .1 + 14 30 a Herculis, variable, 3'».1 to 3"».9, irregular

period; companion 5*". 5 at j) = 116°,

s = 4".7.

U Ophiuchi, 6'».0 to 6™. 7, period 20» S™.17 11 .5 + 1 19

17 51 .1 - 18 59 Cluster in Ophiuchus, good field with low

power.

17 58 .6 + 66 38 Nebula in Draco, planetary, bright, diam-

eter 35", very near pole of ecliptic, very

interesting.

18 7 .3 + 6 50 Nebula in Ophiuchus, planetary, bright,

diameter 5".

18 33 .6 + 38 41 a Lyrce ( Vega) , brightest star in northern

hemisphere.

18 41 .0 + 39 34 € Lyrce, a multiple star, A 5™, B Q"*. 5, C 5'",

D 5"».5, AB 3", CD 2".3, AC 207". Nu-
merous small stars between AB and CD.

18 46 .4 + 33 15 /3 Lyrce, variable, 3'».4 to 4"'.5, period 12<*

21* 47"'.

18 49 .8 + 32 54 Ring Nebula in Lyra, annular, gaseous,

most interesting of its kind.

19 26 .7 + 27 45 /3 Cygni, fine double, 3"' yellow and 7"» blue,

p = 56°, s = 35".

19 48 .5 + 70 1 e Draconis, double, 5™.5 and 7'».5, s = 3".

19 55 .2 + 22 27 Nebula in Vulpecula, the " Dumb Bell Neb-

ula," double, large.

20 42 .0 + 15 46 7 Delphini, double, 4™ and 6'", s = 11".

20 58 .7 - 11 45 Nebula in Aquarius, planetary, bright, very

interesting in a large telescope.

21 2 .4 + 38 15 61 Cygni, double, 5'».5 and 6"», s = 21", one

of the nearest stars to us.

21 8 .2 + 68 6 T Cephei, variable, 5'».6 to 9'".9, period 383"^.

21 28 .2 - 1 16 Cluster in Aquarius, large, globular.

22 23 .7 - 32 f Aquarii, double, 4™ and 4'". 5, s = 3". 3 in

1897.

23 21 .1 + 41 59 Nebula in Andromeda, planetary, small,

very bright, round.
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Table I. Pulkowa Refraction Tables

App't

z
log^ K

App't

z logM A
App't

z
logM A A

o /

1.76032
/

71 1.75614 1.0115
o /

77 1.75131 1.0253 1.0029

6 1.76032 10 1.75606 1.0118 10 1.75107 1.0259 1.0029

10 1.76030 20 1.75598 1.0120 20 1.75083 1.0264 1.0030

15 1.76028 30 1.75590 1.0123 30 1.75058 1.0271 1.0030

20 1.76025 40 1.75582 1.0125 40 1.75032 1.0278 1.0031

25 1.76021 50 1.75573 1.0128 50 1.75005 1.0285 1.0032

30 1.76015 72 1.75564 1.0130 78 1.74976 1.0293 1.0033

35 1.76006 10 1.75555 1.0133 10 1.74947 1.0300 1.0033

40 1.75995 20 1.75546 1.0136 20 1.74917 1.0309 1.0034

45 1.75980 1.0018 30 1.75536 1.0138 30 1.74886 1.0318 1.0035

50 1.75960 1.0022 40 1.75526 1.0141 40 1.74853 1.0327 1.0036

61 1.75955 1.0024 60 1.75516 1.0144 50 1.74819 1.0335 1.0037

52 1.75949 1.0025 73 1.75506 1.0147 79 1.74783 1.0344 1.0038

53 1.75943 1.0026 10 1.75496 1.0150 10 1.74746 1.0354 1.0039

54 1.75936 1.0027 20 1.75485 1.0153 20 1.74707 1.0364 1.0040

65 1.75928 1.0029 30 1.75474 1.0157 30 1.74665 1.0374 1.0041

56 1.75920 1.0032 40 1.75462 1.0160 40 1.74623 1.0385 1.0042

57 1.75912 1.0035 50 1.75450 1.0163 50 1.74579 1.0397 1.0043

58 1.75902 1.0038 74 1.75438 1.0166 80 1.74533 1.0409 1.0044

59 1.75892 1.0041 10 1.75425 1.0170 10 1.74484 1.0421 1.0045

60 1.75881 1.0044 20 1.75412 1.0173 20 1.74433 1.0433 1.0046

61 1.75868 1.0047 30 1.75398 1.0177 30 1.74380 1.0447 1.0048

62 1.75853 1.0051 40 1.75384 1.0181 40 1.74325 1.0461 1.0049

63 1.75837 1.0055 50 1.75369 1.0185 50 1.74266 1.0475 1.0050

64 1.75820 1.0059 75 1.75354 1.0188 81 1.74204 1.0491 1.0052

65 1.75801 1.0064 10 1.75338 1.0191 10 1.74139 1.0508 1.0053
66 1.75780 1.0070 20 1.75322 1.0195 20 1.74071 1.0525 1.0055
67 1.75755 1.0077 30 1.75306 1.0200 30 1.73999 1.0542 1.0057
68 1.75727 1.0085 40 1.75289 1.0205 40 1.73924 1.0561 1.0059

69 1.75694 1.0093 50 1.75271 1.0211 50 1.73844 1.0580 1.0061

70 1.75657 1.0103 76 1.75253 1.0216 82 1.73760 1.0600 1.0063
10 1.75650 1.0105 10 1.75235 1.0223 10 1.73671 1.0622 1.0065
20 1.75643 1.0107 20 1.75216 1.0229 20 1.73577 1.0646 1.0068
30 1.75636 1.0109 30 1.75196 1.0235 30 1.73478 1.0669 1.0070
40 1.75629 1.0111 40 1.75175 1.0241 40 1.73373 1.0694 1.0073
60 1.75622 1.0113 50 1.75153 1.0246 50 1.73260 1.0720 1.0076

71 1.75614 1.0115 77 1.75131 1.0253 83 1.73143 1.0747 1.0078

Supplement

App't log
X A App't log

X ^
z Mtans z Mtanz

82 30 2.61534 1.0669 1.0070

1

86 30 2.88535 1.1934 1.0203

83 2.64226 1.0747 1.0078 87 2.93113 1.2277 1.0241

83 30 2.67076 1.0839 1.0087 87 30 2.98087 1.2708 1.0294

84 2.70088 1.0949 1.0098 88 3.03519 1.3241 1.0357

84 30 2.73294 1.1080 1.0112 88 30 3.09458 1.3902 1.0437

85 2.76717 1.1235 1.0127 89 3.15994 1.4729 1.0541

85 30 2.80376 1.1424 1.0148 89 30 3.23206 1.5762 1.0680

86 2.84304 1.1652 1.0172 90 3.31186 1.7046 1.0869
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Table I. Pulkowa Refraction Tables

B. Factor depending on the Barometer

English

inches
log 5 English

inches
log 5 French

metres
log B

26.0 - 0.07330 28.0 - 0.02409 0.724 - 0.01621
25.1 -0.07157 28.1 - 0.02254 0.726 - 0.01500
25.2 - 0.06984 28.2 - 0.02099 0.728 - 0.01380
25.3 - 0.06812 28.3 - 0.01946 0.730 - 0.01261
25.4 - 0.06641 28.4 - 0.01793 0.732 -0.01142
25.5 - 0.00470 28.5 - 0.01640 0.734 - 0.01024
25.6 - 0.06300 28.6 - 0.01488 0.736 - 0.00906
25.7 - 0.06131 28.7 - 0.01336 0.738 - 0.00788
25.8 - 0.05962 28.8 -0.01185 0.740 - 0.00670
25.9 - 0.05794 28.9 - 0.01035 0.742 - 0.00553
26.0 - 0.05627 29.0 - 0.00885 0.744 - 0.00436
26.1 - 0.05840 29.1 - 0.00735 0.746 - 0.00319
26.2 - 0.05294 29.2 - 0.00586 0.748 -0.00203
26.3 - 0.05129 29.3 - 0.00438 0.750 - 0.00087
26.4 - 0.04964 29.4 - 0.00290 0.752 + 0.00028
26.5 - 0.04800 29.5 - 0.00142 0.754 + 0.00144
26.6 - 0.04636 29.6 + 0.00005 0.756 + 0.00259
26.7 - 0.04473 29.7 0.00151 0.758 + 0.00374
26.8 - 0.04311 29.8 0.00297 0.760 + 0.00488
26.9 - 0.04149 29.9 0.00443 0.762 + 0.00602
27.0 - 0.03988 30.0 0.00588 0.764 + 0.00716
27.1 - 0.03827 30.1 0.00732 0.766 + 0.00830
27.2 - 0.03667 30.2 0.00876 0.768 + 0.00943
27.3 - 0.03508 30.3 0.01020 0.770 + 0.01056
27.4 - 0.03349 30.4 0.01163 0.772 + 0.01168
27.5 - 0.03191 30.5 0.01306 0.774 + 0.01281
27.6 - 0.03033 30.6 0.01448 0.776 + 0.01393
27.7 - 0.02876 30.7 0.01589 0.778 + 0.01505
27.8 - 0.02720 30.8 0.01731 0.780 + 0.01616
27.9 - 0.02.564 30.9 0.01871 0.782 + 0.01727
28.0 - 0.02409 31.0 + 0.02012 0.784 + 0.01837

T. Factor depending on Attached Thermometer

Fahr. log T Cent. log T

-20° + 0.00201 -30° + 0.00209
-10 0.00162 " -25 0.00174

0.00123 -20 0.00139

+ 10 0.00085 -15 0.00104
20 0.00047 -10 0.00069
30 + 0.00008 - 6 + 0.00035
40 - 0.000.30 0.00000
50 - 0.00069 + 5 - 0.00035
60 - 0.00108 10 - 0.00069
70 - 0.00146 16 -0.00104
80 - 0.00184 20 - 0.00138
90 - 0.00222 25 -0.00173

+ 100 - 0.00262 + 30 - 0.00207
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Table I. Pulkowa Refraction Tables

7. Factor depending on External Thermometer

Fahr. log 7 Fahr. log 7 Cent. log 7

-22° + 0.06560 + 35° + 0.01200 -30° + 0.06560
-21 0.00461 36 0.01112 — 29 0.06381
-20 0.06361 37 0.01023 — 28 0.06202
-19 0.06262 38 0.00935 -27 0.06023
-18 0.06162 39 0.00848 — 26 0.05846
-17 0.0(5063 40 0.00760 -25 0.05669
-16 0.05964 41 0.00672 — 24 0.05493
— 15 0.05866 42 0.00585 -23 0.05317
-14 0.05767 43 0.00498 — 22 0.05142
-13 0.05669 44 0.0O411 -21 0.04968
-12 0.05571 45 0.00324 -20 0.04795
-11 0.05473 46 0.00238 -19 0.04622
-10 0.05376 47 0.00151 -18 0.04451
— 9 0.05279 48 + 0.00064 -17 0.04279
— 8 0.05182 49 - 0.00022 — 16 0.04108
- 7 0.05085 50 - 0.00107 — 15 0.03938
— 6 0.04988 51 - 0.00193 — 14 0.03769
— 5 0.04891 52 — 0.00279 -13 0.03601
— 4 0.04795 53 -0.00364 -12 0.03433
— 3 0.04699 54 — 0.00449 — 11 0.03265
- 2 0.04603 55 — 0.00535 — 10 0.03099
- 1 0.04508 56 — 0.00(i20 - 9 0.02933

0.04413 57 - 0.00704 - 8 0.02767

+ 1 0.04318 58 — 0.00789 - 7 0.02602
2 0.04223 59 — 0.00873 — 6 0.02438
3 0.04128 60 — 0.00957 — 5 0.02274
4 0.04033 61 — 0.01041 — 4 0.02112
5 0.03938 62 — 0.01125 - 3 0.01950
6 0.03844 63 - 0.01209 — 2 0.01788
7 0.03750 64 — 0.01293 - 1 0.01627
8 0.03657 65 — 0.01376 0.01466
9 0.03563 66 — 0.01459 + 1 0.01306
10 0.03470 67 - 0.01543 2 0.01147
11 0.03377 68 — 0.01626 3 0.00988
12 0.03284 69 — 0.01709 4 0.00830
13 0.03191 70 — 0.01792 5 0.00(J72

14 0.03099 71 — 0.01874 6 0.00515
15 0.03007 72 — 0.01956 7 0.00359
16 0.02915 73 - 0.01838 8 0.00203
17 0.02822 74 - 0.01920 9 + 0.00047
18 0.02730 75 — 0.02202 10 — 0.00107
19 0.02639 76 — 0.02284 11 — 0.00261
20 0.02548 77 — 0.02366 12 - 0.00415
21 0.02456 78 — 0.02447 13 — 0.00569
22 0.02364 79 — 0.02528 14 - 0.00721
23 0.02273 80 - 0.02609 15 — 0.00873
24 0.02183 81 — 0.02690 16 - 0.01025
25 0.02094 82 — 0.02771 17 — 0.01176
26 0.02004 83 - 0.02851 18 - 0.01326
27 0.01914 84 — 0.02932 19 — 0.01476
28 0.01824 85 — 0.03012 20 - 0.01626
29 0.01734 86 — 0.03093 21 — 0.01775
30 0.01645 87 - 0.03173 22 - 0.01923
31 0.01555 88 — 0.03253 23 — 0.02071

32 0.01466 89 - 0.03333 24 -0.02219
33 0.01377 90 — 0.03413 25 — 0.02366

34 0.01288 91 — 0.03492 30 — 0.03093

+ 35 0.01200 92 - 0.03572 + 35 — 0.03810
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Table I. Pulkowa Refraction Tables

log <T

App't

z
log a-

App't

z
log a-

o 1

80 0.00019

o 1

85 0.00146

80 30 0.00022 85 30 0.00185
81 0.00025 86 0.00241

81 30 0.00029 86 30 0.00320

82 0.00035 87 0.00421

82 30 0.00045 87 30 0.00561

83 0.00057 88 0.00749
83 30 0.00073 88 30 0.01006
84 0.00091 89 0.01.362

84 30 0.00116 89 30 0.01813

85 0.00146 90 0.02424

Date i

Jan. 15 + 0.34

Feb. 15 + 0.27

Mar. 15 + 0.05
April 15 -0.08
May 15 -0.20
June 15 -0.26
July 15 -0.33
Aug. 15 - 0.30

Sept. 15 -0.19
Oct. 15 + 0.16
Nov. 15 + 0.33
Dec. 15 + 0.37

log r = log M + log tan z + A (log B + log T) + \ log 7 + i log a-

Table II. Pulkowa Mean Refractions
Barom. 29.5 inches., Att. Therm. 50° F., Ext. Therm. 50° F.

App't Mean App't Mean App't Mean App't Mean

z refr'n z refr'n z refr'n z refr'n

1 / // 1 / '/ / / II 1 / II

0.0 58 1 31.2 73 3 4.7 80 40 5 34
5 5.0 59 1 34.8 73 20 3 8.5 81 5 46

10 10.1 60 1 38.7 73 40 3 12.5 81 20 5 58
15 15.3 61 1 42.8 74 3 16.6 81 40 6 12

20 20.8 62 1 47.1 74 20 3 20.9 82 6 26
25 26.7 63 1 51.7 74 40 3 25.4 82 20 6 41

30 33.0 64 1 56.6 75 3 30.0 82 40 6 58
32 35.7 65 2 1.9 75 20 3 34.8 83 7 15

34 38.5 65 30 2 4.7 75 40 3 39.9 83 20 7 35
36 41.5 66 2 7.6 76 3 45.2 83 40 7 56
38 44.6 66 30 2 10.6 76 20 3 50.7 84 8 19

40 47.9 67 2 13.8 76 40 3 56.5 84 20 8 43

42 51.4 67 .30 2 17.1 77 4 2.5 84 40 9 10
44 55.1 68 2 20.5 77 20 4 8.8 85 9 40
46 59.1 68 30 2 24.1 77 40 4 15.5 85 30 10 32
48 1 3.4 69 2 27.8 78 4 22.5 86 11 31

60 1 8.0 69 30 2 31.7 78 20 4 29.8 86 30 12 42
62 1 13.0 70 2 35.7 78 40 4 37.6 87 14 7

63 1 15.7 70 30 2 39.9 79 4 45.7 87 30 15 49
64 1 18.5 71 2 44.4 79 20 4 54.4 88 17 55
65 1 21.4 71 30 2 49.1 79 40 5 3.5 88 30 20 33
56 1 24.5 72 2 54.0 80 5 13.1 89 23 53
57 1 27.8 72 30 2 59.2 80 20 5 23.4 89 30 28 11

58 1 31.2 73 3 4.7 80 40 5 .34.3 90 33 51
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Table m. m = '^^, or m ='-^^m^.
sm 1" sin 1"

t, or t, or t, or t, or t, or
to-t

m
to-t

m
to-t

m
to-t

m
to-t m

m 8
" m s

" m s
" ni «

" m 8
"

0.00 4 31.42 8 125.65 12 282.68 16 502.5
5 0.01 4 5 32.74 8 5 128.28 12 5 286.62 16 5 507.7

10 0.05 4 10 34.09 8 10 130.94 12 10 290.58 16 10 613.0
15 0.12 4 15 35.46 8 15 133.63 12 15 294.58 16 15 618.3
20 0.22 4 20 36.87 8 20 136.34 12 20 298.60 16 20 523.6
25 0.34 4 25 38.30 8 25 139.08 12 25 302.64 16 25 529.0

30 0.49 4 30 39.76 8 30 141.85 12 30 306.72 16 30 534.3
35 0.67 4 35 41.25 8 35 144.64 12 35 310.82 16 35 539.7
40 0.87 4 40 42.76 8 40 147.46 12 40 314.95 16 40 545.2
45 1.10 4 45 44.30 8 45 150.31 12 45 319.10 16 45 550.6
50 1.36 4 50 45.87 8 50 153.19 12 50 323.29 16 60 656.1
55 1.65 4 55 47.46 8 55 156.09 12 55 327.50 16 65 561.6

1 1.96 5 49.09 9 159.02 13 331.74 17 567.2

1 5 2.31 5 5 50.73 9 5 161.98 13 5 336.00 17 5 572.8
1 10 2.67 5 10 52.41 9 10 164.97 13 10 340.30 17 10 578.4
1 15 3.07 5 15 54.11 9 15 167.97 13 15 344.62 17 15 584.0

1 20 3.49 5 20 55.84 9 20 171.02 13 20 348.97 17 20 589.6

1 25 3.94 5 25 57.60 9 25 174.08 13 25 353.34 17 25
i

595.a

1 30 4.42 5 30 59.40 9 30 177.18 13 30 357.74 17 30 601.0
1 35 4.92 5 35 61.20 9 35 180.30 13 35 362.17 17 35 606.&
1 40 5.45 5 40 63.05 9 40 183.46 13 40 366.64 17 40 612.6
1 45 6.01 5 45 64.91 9 45 186.63 13 45 371.11 17 45 618.S
1 50 6.60 5 50 66.81 9 50 189.83 13 50 375.12 17 50 624.1

1 55 7.21 5 55 68.73 9 55 193.06 13 65 380.17 17 55 630.a
2 7.85 6 70.68 10 196.32 14 384.74 18 635.9'

2 5 8.52 6 5 72.66 10 5 199.60 14 5 389.32 18 5 641.7

2 10 9.22 6 10 74.66 10 10 202.92 14 10 .393.94 18 10 647.7

2 15 9.94 6 15 76.69 10 15 206.26 14 15 398.58 18 15 653.&
2 20 10.69 6 20 78.75 10 20 209.62 14 20 403.26 18 20 659.6
2 25 11.47 6 25 80.84 10 25 213.02 14 25 407.96 18 25 665.6

2 30 12.27 6 30 82.95 10 30 216.44 14 30 412.68 18 30 671.&
2 35 13.10 6 35 85.09 10 35 219.88 14 35 417.44 18 35 677.7
2 40 13.96 6 40 87.26 10 40 223.36 14 40 422.23 18 40 683.&
2 45 14.85 6 45 89.45 10 45 226.86 14 45 427.04 18 45 689.9
2 50 15.76 6 50 91.68 10 50 230.39 14 50 431.87 18 50 696.0
2 55 16.70 6 55 93.92 10 55 233.95 14 65 436.73 18 55 702.2

3 17.67 7 96.20 11 237.54 15 441.63 19 708.4
3 5 18.67 7 5 98.50 11 5 241.14 15 5 446.55 19 6 714.6

3 10 19.69 7 10 100.84 11 10 244.79 15 10 451.50 19 10 720.9
3 15 20.74 7 15 103.20 11 15 248.45 15 15 456.47 19 15

!
727.2

3 20 21.82 7 20 105.58 11 20 252.15 15 20 461.47 19 20 733.5

3 25 22.92 7 25 107.99 11 25 255.87 15 25 466.50 19 25 739.8

3 30 24.05 7 30 110.44 11 30 259.62 15 30 471.55 19 30 746.2

3 35 25.21 7 35 112.90 11 35 263.39 15 35 476.64 19 35 752.6

3 40 26.40 7 40 115.40 11 40 267.20 15 40 481.74 19 40 759.0
3 45 27.61 7 45 117.92 11 45 271.02 15 45 486.88 19 45 765.4

3 50 28.85 7 50 120.47 11 50 274.88 15 50 492.05 19 50 771.9

3 55 30.12 7 65 123.05 11 55 278.76 15 55 497.23 19 55 778.4

4 31.42 8 125.65 12 282.68 16 502.46 20 i 784.9
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Table III. m= . ,„ , or m= r—-.—--

sin 1" sm 1"

2 sin^ i <

' sinl"

t, or t, or

<o-<
m

to -t m
m «

" m 8
"

20 784.9 24 1129.9

20 5 791.4 24 6 1137.8

20 10 798.0 24 10 1145.6

20 15 804.6 24 15 1153.6
20 20 811.3 24 20 1161.6

20 25 817.9 24 25 1169.5

20 30 824.6 24 30 1177.5
20 35 831.2 24 35 1185.5
20 40 838.0 24 40 1193.6
20 45 844.7 24 45 1201.6
20 50 851.6 24 50 1209.6
20 55 858.4 24 55 1217.7

21 865.3 25 1225.9
21 5 872.1 25 5 1234.1
21 10 879.0 25 10 1242.3
21 15 886.0 25 15 1250.6
21 20 893.0 25 20 1258.8
21 25 900.0 25 25 1267.1

21 30 907.0 25 30 1275.4
21 35 914.0 25 35 1283.8
21 40 921.1 25 40 1292.2
21 45 928.2 25 45 1300.5
21 50 935.2 25 50 1.309.0

21 55 942.3 25 55 1317.4

22 949.5 26 1325.9
22 5 956.7 26 5 1334.4
22 10 963.9 26 10 1342.9
22 15 971.2 26 15 1351.4
22 20 978.5 26 20 1360.1
22 25 985.8 26 25 1.S68.7

22 30 993.2 26 30 1377.3
22 35 1000.6 26 35 1385.9
22 40 1008.0 26 40 1394.7
22 45 1015.4 26 45 1403.4
22 50 1022.8 26 50 1412.2
22 55 1030.3 26 55 1420.9

23 10.37.8 27 1429.7
23 5 1045.3 27 5 1438.5
23 10 1052.8 27 10 1447.4
23 15 1060.4 27 15 1456.3
23 20 1068.1 27 20 1465.2
23 25 1075.7 27 25 1474.1

23 30 1083.3 27 30 1483.1
23 35 1091.0 27 35 1492.1
23 40 1098.8 27 40 1501.1
23 45 1106.5 27 45 1510.2
23 50 1114.3 27 50 1519.2
23 55 1122.0 27 55 1528.3

24 1129.9 28 1537.5

t n

m 8
"

0.00

2 0.00

4 0.00

6 0.01

8 0.04

9 0.06

10 0.09

11 0.14

12 0.19

12 30 0.23

13 0.26

13 30 0.31

14 0.36

14 30 0.41

16 0.47

15 30 0.54

16 0.61

16 30 0.69

17 0.78

17 30 0.88

18 0.98

18 30 1.09

19 1.22

19 30 1.35

20 1.49

20 20 1.60

20 40 1.70
21 1.82

21 20 1.93

21 40 2.06

22 2.19

22 20 2.32

22 40 2.46
23 2.61

23 20 2.77

23 40 2.93

24 3.10
24 20 3.27

24 40 3.45

25 3.64

25 20 3.84

25 40 4.05

26 4.26

26 20 4.48

26 40 4.72

27 4.96

27 20 5.20

27 40 5.46

28 5.73
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(TiiE Numbers refer to Pages)

Aberration : general, of a star in the

direction of the observer's motion,

40; annual, defined, 41; annual,

affecting a star's apparent place,

45, 61; annual, in right ascension

and declination, 62, 64; diurnal,

defined, 41; diurnal, in hour angle

and declination, 41 ; diurnal, in

azimuth, 43, 193, 200; diurnal, in

azimuth and altitude, 43.

Altitude: defined, 3; measured at sea

with a sextant, 36, 92 ; measured on

land with a sextant, 93.

Angle : measured by vernier, 65 ; meas-

ured by reading microscope, 67, 179.

Apparent place : defined, 25, 45 ; reduc-

tion to, 61.

Axis of the celestial sphere, defined, 3.

Azimuth: defined, 3; constant of a

transit instrument. 127,— determina-

tion of, 142 ; of a point, from obser-

vations of a star near elongation,

193; of a point, from observations

of Polaris at any hour angle, 199

;

sometimes measured from north

point, 199; of the polar axis of an
equatorial telescope, 217.

Azimuth and altitude : as coordinates,

7 ; of a star, from given hour angle

and declination, 10.

Barometer: factor in refraction for-

mulae, 34, 35, 255.

Berliner Astronomisches Jahrbuch, 2.

Bessel: his star numbers,' 62; his star

constants, 62.

Celestial sphere: defined, 2.

Chronograph: described, 86; illustra-

tion of, 87; used for comparing
clocks and chronometers, 85.

Chronographic method of recording

transit observations, 88.

Chronometer : correction, 83 ; rate, 83

;

care of, 85; transported for deter-

mining geographical longitude, 159;

determination of correction from
sextant observations, 101, — from
transit observations, 127, 146, —
from surveyor's transit observa-
tions, 203.

Circle: vertical, defined, 3; hour, de-
fined, 3; latitude, defined, 5; pri-

mary, 7; secondary 7; graduated
vertical, 175, 203; graduated hori-

zontal, 191.

Circummeridan altitudes: of the sun,

for determining geographical lati-

tude, 112.

Clock: astronomical, 86; driving, 212.

Collimation: axis, 122; plane, 122;

constant of a transit instrument,

127,— determination of, 137, 151.

Collimator: described, 138; determi-

nation of collimation constant by
one, 138,— by two collimators, 141;

determination of flexure by two col-

limators, 181.

Colure : defined, 4.

Connaissance des temps, 2.

Coordinates: spherical, 6; systems of,

7 ; transformation of, 8.

Day : sidereal, 15 ; true solar, 16 ; mean
solar, 16; civil, 17 ; astronomical, 17.

Declination: defined, 4; fundamental
determination of, 187; differential

determination of, 187 ; axis of equa-

torial telescope, 212; circle of equa-

torial telescope, 212.

Dip of the horizon, 36.

Distance between two stars, 14.

261
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Earth: form and dimensions of, 23;

radius of, 25; reduction of observa-

tions to the center of, 23.

Eccentricity of a graduated circle, 69;

of a sextant, determined, 97.

Ecliptic: defined, 4; obliquity of, 4;

true, 45; mean, 45.

Elongation: of a star, 77, 193; reduc-

tion to, 194, 258.

Ephemeris: defined, 2; American, 2.

Equation of time : defined, 17.

Equator: celestial, defined, 3; reading

of a circle, 187.

Equatorial telescope: described, 212;

illustration of, 213; adjustments of,

214.

Equinoxes: defined, 4; precession of,

44.

Error of runs : defined, 68 ; determina-

tion of value of, 68, 190.

Eye and ear method of observing, 85.

Filar micrometer : described, 70 ; illus-

tration of, 71 ; methods of using, 223,

229, 233.

Finder: of an equatorial telescope,

212 ; adjustment of, 215.

Geocentric place : defined, 25.

Graduated circle : read by vernier, 65

;

read by microscope, 67 ; eccentricity

of, 69; graduation errors of, 183;

flexure of, 184, 186.

Hints on computing, 241.

Horizon: defined, 2; dip of, 36; glass,

89; artificial, 93.

Hour angle : defined, 4; of a star, from
given zenith distance and declina-

tion, 12; of a star, from given right

ascension and sidereal time, 12.

Hour angle and declination: as coor-

dinates, 7; of a star, from given

azimuth and altitude, 8.

Hour circle: defined, 3; of an equa-

torial telescope, 212.

Index correction : of a sextant, defined,

96,— determined from observations

of a star, 96,— from observations of

the sun, 96.

Interpolation: elementary considera-

tions on, 19; general formula for,

244; for a date midway between
two tabular dates, 246.

Latitude: circles of, defined, 5; of a
star, 5; geographical, 5; geocen-
tric, 23; reduction to geocentric,

23; geographical, determined from
meridian altitude of a star or the
sun, 109, 209,— from an altitude of

a star, 110,— from circummeridian
altitudes, 112,— by Talcott's meth-
od, 167, — from meridian circle

observations, 187, 188, 190; varia-

tion of, 174.

Least reading of a vernier, 66.

Least squares: application to deter-

mination of proper motion, 58,

—

to reduction of transit observations,

152, — to combination of latitude

observations, 173; formulae result-

ing from, 247.

Level : spirit, described, 79 ;
general

formulae for, 80; adjustments of,

83 ; value of a division of, 81 ; strid-

ing, 123; zenith, 167; plate, 196,

211 ; constant of transit instrument,

127,— determination of, 134, 140;

trier, 81,— illustration of, 81.

Longitude : of a star, defined, 5 ; geo-

graphical, defined, 5; geographical,

determined by the method of lunar
distances, 115,— by transportation

of chronometers, 159,— by the elec-

tric telegraph, 160,— by the helio-

trope, 163,— by moon culminations,

164.

Longitude and latitude: as coordi-

nates, 7 ; of a star, from given right

ascension and declination, 13.

Lunar distances : method of determin-

ing geographical longitude from,

115.

Meridian: defined, 3; direction of,

determined from observations of a
star, 196, 200.

Meridian circle: described, 175; illus-

tration of, 176 ; flexure of, 181 ; deter-

mination of graduation errors of,

183; fundamental and differential

determinations of declination, 187

;

determinations of latitude, 187, 188,

190.

Meridian mark, or mire, 143.

Micrometer : described, 70 ; filar, 70,—
illustration of, 71 ; value of a revolu-

tion of, 72,— effect of temperature

on the, 77 ; of a transit instrument,
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123 ; of a zenith telescope, 125, 167

;

of a meridian circle, 179, 180 ; ring,

236.

Microscope: description of reading,

67, 177; methods of using, 67, 68,

179, 190; error of runs of, 68, 179,

190.

Mire, 143.

Nadir: defined, 2; determination of

the level and collimation constants

of a transit instrument by the

method of the, 139, 140; reading of

a meridian circle, 180.

Nautical Almanac, American Ephem-
eris and, 2.

Nautical Almanac (British), 2.

Noon: sidereal, 15; true solar, 16;

mean solar, 16.

Nutation: defined, 44; affecting the

true place of a star, 45 ; terms in re-

duction formulae, 62, 64.

Objects for the telescope, 251.

Obliquity of the ecliptic: defined, 4;

affected by attractions of the plan-

ets, 47.

Parallactic angle : defined, 11 ; of a

star, from given azimuth and
zenith distance, 11 ; of a star, from
given hour angle and declination,

11.

Parallax: defined, 25; equatorial hori-

zontal, 26 ; of a body in zenith dis-

tance, the earth being regarded as a

sphere, 26; of a body in azimuth
and zenith distance, the earth being

regarded as a spheroid, 27 ; of a body
in right ascension and declination,

31 ; factors, 32.

Personal equation : absolute, 157 ; rela-

tive, 157 ; machine, 159.

Plumb line : local deviations of, 23.

Polar axes : of an equatorial telescope,

212 ; adjustments of, 215, 217.

Polar distance : defiued, 4.

Poles of the equator, 3.

Precession : luni-solar, 47 ;
planetary,

47 ;
general, 47 ; in right ascension

and declination during any interval

of time, 48 ; annual value of, in right

ascension and declination, 50; secu-

lar variation of annual, 57.

Prime vertical : defined, 3.

Prismatic sextant, 91.

Prismatic transit instrument, 125.

Proper motion : of the stars, 45, 54

;

determination of annual, 54; reduced
from one epoch to another, 55 ; de-

termination of, by the method of

least squares, 58.

Reduction to elongation : in the deter-

mination of azimuth, 194; tables for,

258.

Reduction to the meridian : of circum-

meridian altitudes of a star or the

sun, for latitude, 112, 258 ; for zenith

telescope observations for latitude,

171; for meridian circle determina-

tions of declination, 187.

Refraction: general laws of, 32; ab-

normal, in azimuth, 33; Pulkowa
formula for, in zenith distance, 34;

Pulkowa tables for computing, 254

;

Pulkowa mean, 257 ; Comstock's
formula for, 35; differential formu-
lae for, in right ascension and decli-

nation, 36; differential, affecting

zenith telescope observations for

latitude, 169, 170 ; correction for, in

meridian circle observations, 187

;

differential, affecting filar microm-
eter observations, 224, 229, 234.

Right ascension : defined, 5 ; of a star,

from given hour angle and sidereal

time, 12 ; of a star, from transit ob-

servations, 177; of the moon, from
transit observations, 165.

Right ascension and declination: as

coordinates, 7.

Ring micrometer: described, 236 ; de-

termination of radius of, 236 ; method
of observing with, 239.

Semidiameter : correction for, 38, 92,

93; apparent, of the moon, 38; con-

traction of, produced by refraction,

39.

Sequence and degree of corrections,

43.

Sextant : described, 89 ; illustration of,

90; general principles of, IK); pris-

matic, 91; methods of observing with,

92; adjustments of, 94; correction

for index error of, 96 ; correction for

eccentricity of, 97; determinations

of time, 101 ; determinations of lati-

tude, 109 ; observations of lunar dis-
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tances for determining geographical

longitude, 115.

Sidereal time : defined, 5 ; of a star,

from given hour angle and right as-

cension, 12.

Solstices: defined, 4.

Spherometer : Harkness's, for investi-

gating form of pivots, 137.

Stars: catalogues of, 40, 58, 59, 223;

undetermined, 177; standard, 178;

atlas of, 251.

Sun: mean, 16; right ascension of

mean, 17; shades, to protect ob-

server's eyes, 90, 207.

Surveyor's transit : determination of

time by, 203, — of latitude by, 209,

— of azimuth by, 211.

Talcott's method of determining lati-

tude, 167.

Telescope: sextant, 89; zenith, 167;

equatorial, 212; magnifying power
of, 220; field of view of, 221.

Thermometer: attached, refraction

factor for, 34, 255 ; external, refrac-

tion factor for, 34, 35, 256.

Time: sidereal, 15; true solar or ap-

parent, 16 ; mean solar, 16; civil, 17

;

astronomical, 17; equation of, 17;

conversion of, 18 ; determined from
sextant observations, 101, — from
star transits, 146, — from surveyor's

transit observations, 203.

Transit instrument: described, 122;

illustrations of, 124, 126; general

formulae for, 129 ; wire intervals of,

130, 132; reduction to middle wire
of, 131; determination of level con-

stant of, 134, 140, — of inequality of

pivots of, 134, — of collimation con-

stant of, 137, 151, — of azimuth con-

stant of, 142; flexure of prismatic

form of, 157.

Vernier: described, 65; illustration

of, 66.

Year : tropical, 17 ; the fictitious, 46.

Zenith: defined, 2; level, 167; read-

ing of a circle, 180.

Zenith distance: defined, 3; of a star,

at greatest elongation, 78, 193.

Zenith telescope : Talcott's method of

determining latitude by, 167.
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COMPUTATION RULES AND
LOGARITHMS.

SILAS W. HOLMAN,
Professor of Physics {Emeritus), Massachusetts Institute

of Technology, Boston, Mass.

8vo. Cloth. $i.oo.

Students, engineers, and others who are called upon to make computations,

come, sooner or later, to recognize the fact that such work is a great tax upon

time and brain. Every means for economy of effort is here of real importance,

as it not only effects saving of time, labor, and expense, but promotes accuracy.

The rules and tables contained in this collection are prepared and arranged

from this standpoint. The tables comprise four-place logarithms, anti-logs,

squares, reciprocals, slide-wire ratios, and trigonometric functions both natural

and logarithmic; five-place logarithms of numbers and of the trigonometric

functions; and values of important constants. Thus by far the greater part of

physical and chemical computations, and nearly all pertaining to engineering

and technical work, lie within the scope of these tables, which would rarely

need to be supplemented by any other than a good seven-place set. Qear-

ness of type, and special features in arrangement and in the use of heavy-faced

figures for arresting the glance, promote rapidity in the use of the tables. The

few errors brought to notice in the use of over a thousand copies have been

corrected, so that the apprehension on this score in the use of new tables is

removed. The text provides, of course, directions for working the tables; but

a much more important and unique feature is a set of concise rules for the use

of the proper number of places of significant figures in computations of any

kind. These rules are simple and few, and may be easily mastered. They are

illustrated by numerical examples. By employing them, sufficient accuracy in

the result may be assured, and the great waste of time and labor from the use

of excessive figures may be avoided. Many years' trial of these rules in the

laboratory classes of the author and others has proved their sufficiency and

practicability. The moderate size and weight of the volume are not unimpor-

tant considerations to the user of such books.

THE MACMILLAN COMPANY,
66 FIFTH AVENUE, NEW YORK.



A HISTORY OF PHYSICS.

FLORIAN CAJORI, Ph.D.,

Professor of Physics in Colorado College.

i2mo. Cloth. $i.6o, net.

This brief popular history gives in broad outline the develop-

ment of the science of physics from antiquity to the present time.

It contains also a more complete statement than is found else-

where, of the evolution of physical laboratories in Europe and

America. The book, while of interest to the general reader, is

primarily intended for students and teachers of physics. The

conviction is growing that, by a judicious introduction of histori-

cal matter, a science can be made more attractive. Moreover,

the general view of the development of the human intellect

which the history of a science affords is in itself stimulating and

liberalizing.

In the announcement of Oshvald^s Klassiker der Exakten

Wissenschaften we read as follows :
" While by the present

methods of teaching, a knowledge of science in its present state

of advancement is imparted very successfully, eminent and far-

sighted men have repeatedly been obliged to point out a defect

which too often attaches to the present scientific education of

our youth. // is the absence of the historical sense and the want

of knowledge of the great researches upon which the edifice of

science rests.
^''

It is hoped that the present volume may assist in remedying

the defect so clearly pointed out by Professor Ostwald.

THE MACMILLAN COMPANY,
66 FIFTH AVENUE, NEW YORK.
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